TUTORIAL 1

Name:

ANSWER SCHEME

Instructor: IMRAN SYAKIR MOHAMAD

1. Write the numbers presented by the following prefixes:

mega-	kilo-	micro-	nano-	pico-	deci-	centi-	milli-
10 ⁶	10 ³	10 ⁻⁶	10 ⁻⁹	10 ⁻¹²	10 ⁻¹	10 ⁻²	10 ⁻³

2. What is the number of significant figures in each of the following measurements?

Measurements	No. of significant figures		
5075710.019 s	10		
2200 g	2		
4.020 km	4		
0.000003 kg	1		
2.00 x 10 ¹⁹ atoms	3		

3. Carry out the following conversions using Factor Label Method.

482.2 in ³ to cubic centimeter	476 cm ² to square inches		
7901.8 cm³	73.78 in ²		

4. To determine the density of ethyl alcohol, a student pipet 5.00 mL sample into an empty flask weight 15.246 g, he finds that the mass of the flask + ethyl alcohol = 19.171 g. Calculate the density of ethyl alcohol.

0.785 g/mL

5. The density of ethanol, a colorless liquid is 0.798 g/mL. Calculate the mass of 17.4 mL of the liquid?

13.89 g

6. The commonly accepted measurement now used by dietary specialist in assessing whether a person is overweight is the body mass index (BMI). BMI is based on a person's weight and height. It is the mass, in kilograms, divided by the square of the height in meters, which is, expressed in kg/m². Generally speaking, if the BMI exceeds 25, a person considered overweight. What is the BMI of a person being 69.0 inches tall and weight 158.0 lb.?

23.33 kg/m²

7. Give the number of protons, neutrons and electrons in each of the following species

Species	¹⁷ 8O	¹⁹⁹ 80 Hg	²⁰⁰ 80Hg	¹⁴ 7N ³⁻	⁵⁴ 26Fe ²⁺	³¹ 15P ³⁻	¹⁰⁷ 47Ag+
Proton	8	80	80	7	26	15	47
Neutron	9	119	120	7	28	16	60
Electron	8	80	80	10	24	18	46

8. Europium has two naturally occurring isotopes which are Eu-151 and Eu-153. Eu-151 has a mass of 150.9198 amu and a natural abundance of 47.8%. Using the atomic mass of europium, find the mass of Eu-153.

$$\frac{44 \cdot 8}{100} \times 150.9198 + (\frac{100.447.8}{100} \times 2) = 157.964$$

and
 $(72.1397 \text{ and}) + (0.5222) = 157.964$
 $0.522 \times = 79.8243$ and
 $2c = |52.920|$ and
 $c = 152.920|$ and

- 9. Calculate
 - a) The mass in gram, of 0.155 mol C_3H_8

6.82 g

b) The number of moles of C_4H_{10} in a 165 kg sample

2844.83 mol

10. Melamine, which is used to make plastic items such as dishes and toys, contains 28.57% carbon, 4.80% hydrogen and 66.64% nitrogen. If the molar mass is 126 g/mol, what is the molecular formula of melamine?

			1000
	C	#	N
2	28.57	4.80	66.64
forme loog	28.57 3	4.805	66.643
mol= <u>m.m.ss</u>	20575 12.011.0/m.1 = 2.37871	4.805 1.0080/ml =4.7619 mol	66.64 3 14.0073/m = 4.7576 ma
÷ 8m lest	2.3787mal 2.3787mal	4.7619 mml 2.3787 mml	4.757 ma
	= 1	= 2	32

Emperied formula melamine = (H2N2 (CH2N3)x = 126 g/mol. (12.011 g/mol + 2(1.00 Bg/mol) + 2 (14.007 g/mol))x = 126 g/mol) (42.041 g/mol)x = 126 g/mol (42.041 g/mol)x = 126 g/mol x = 2.997 = 3 molecolor formula melamine = C3H2N2

11. All alkali metals react with water to produce hydrogen gas and the corresponding alkali metal hydroxide. A typical reaction is that between lithium and water.

Li (s) + H₂O (l) \rightarrow LiOH (aq) + H₂ (g)

a) Balance the equation.

 $2\text{Li}(s) + 2\text{H}_2O(l) \rightarrow 2\text{LiOH}(aq) + \text{H}_2(g)$

b) How many moles of H₂ will be formed by the complete reaction of 6.23 moles of Li with water?

2 mol Li = 1 mol H₂ 6.23 mol Li = $\frac{1}{2} \times 6.23$ mol H₂ = 3.115 mol H₂

c) How many grams of H₂ will be formed by the complete reaction of 80.57 g of Li with water?

```
 \begin{array}{ll} \mbox{mol Li} &= 80.57 g/6.94 \mbox{ g/mol} \\ &= 11.61 \mbox{ mol} \\ \mbox{2 mol Li} &\equiv 1 \mbox{ mol H}_2 \\ \mbox{11.61 mol Li} &= \frac{1}{2} \mbox{ 11.61 mol H}_2 \\ &= 5.805 \mbox{ mol H}_2 \\ \mbox{mass} &= \mbox{ mol x molar mass} \\ \mbox{mass of H}_2 &= 5.805 \mbox{ mol x 2 g/mol} \\ &= 11.61 \mbox{ g} \end{array}
```

12. Urea, (NH₂)₂CO is prepared by reacting ammonia with carbon dioxide:

 $NH_3 + CO_2 \rightarrow (NH_2)_2CO + H_2O$ (not balanced)

In one process 637.2 g of NH₃ are allowed to react with 1142 g of CO₂.

a) Which of the reactants is limiting reagent?

2NH₃ + CO₂ → (NH₂)₂CO + H₂O mol NH₃ = 637.2/17 = 37.48 → 37.48/2 = 18.74 mol mol CO₂ = 1142/44 = 25.95 → 25.95/1 = 25.95 mol therefor → NH₃ is a limiting reagent

b) Calculate, the mass of (NH₂)₂CO formed?

```
2 mol NH<sub>3</sub> = 1 mol urea

37.48 mol NH<sub>3</sub> = 0.5 x 37.48 mol urea

= 18.74 mol urea

m urea = mol x MW urea

= 18.74 mol x (2[14+2]+12+16) g/mol = 1124.4 g
```

13. Describe how you would prepare 5.00 x 10^2 mL of 1.75 M H₂SO₄ solution starting with an 8.61 M stock solution of H₂SO₄

$$\begin{array}{ll} \mathsf{M}_{i}\mathsf{V}_{i} & = \mathsf{M}_{f}\mathsf{V}_{f} \\ \mathsf{V}_{i} & = \mathsf{M}_{f}\mathsf{V}_{f}/\mathsf{M}_{i} \\ & = \frac{(1.75 \text{ M})(500 \text{ mL})}{8.61 \text{ M}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \\ & = 0.101 \text{ L} @ 101 \text{ mL} \end{array}$$

Place 0.101 L @ 101 mL stock solution in volumetric flask 500 mL, add distilled water to give a final volume 500 mL.

14. How many milliliter of a 0.610 M NaOH solution are needed to neutralize 20.0 mL of a 1.75 M H_2SO_4 solution?

 $NaOH + H_2SO_4 \rightarrow Na_2SO_4 + H_2O$ (not balanced)

 $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$ (balanced)

$$\frac{MaVa}{a} = \frac{MbVb}{b}$$
$$Vb = \frac{(Ma)(Va)(b)}{(Mb)(a)}$$
$$Vb = \frac{(1.75 \text{ M})(20 \text{ mL})(2)}{(0.610 \text{ M})(1)}$$
$$Vb = 114.75 \text{ mL}$$