CHEMISTRY DMKC1033

TUTORIAL 1

Name:

ANSWER SCHEME

Instructor:

IMRAN SYAKIR MOHAMAD

1. Write the numbers presented by the following prefixes:

mega-	kilo-	micro-	nano-	pico-	deci-	centi-	milli-
10^{6}	10^{3}	10^{-6}	10^{-9}	10^{-12}	10^{-1}	10^{-2}	10^{-3}

2. What is the number of significant figures in each of the following measurements?

Measurements	No. of significant figures
5075710.019 s	$\mathbf{1 0}$
2200 g	$\mathbf{2}$
4.020 km	$\mathbf{4}$
0.0000003 kg	$\mathbf{1}$
2.00×10^{19} atoms	$\mathbf{3}$

3. Carry out the following conversions using Factor Label Method.

482.2 in 3 to cubic centimeter	$476 \mathrm{~cm}^{2}$ to square inches
$7901.8 \mathrm{~cm}^{3}$	$73.78 \mathrm{in}^{2}$

4. To determine the density of ethyl alcohol, a student pipet 5.00 mL sample into an empty flask weight 15.246 g , he finds that the mass of the flask + ethyl alcohol = 19.171 g . Calculate the density of ethyl alcohol.

$0.785 \mathrm{~g} / \mathrm{mL}$

5. The density of ethanol, a colorless liquid is $0.798 \mathrm{~g} / \mathrm{mL}$. Calculate the mass of 17.4 mL of the liquid?
13.89 g

CHEMISTRY DMKC1033

6. The commonly accepted measurement now used by dietary specialist in assessing whether a person is overweight is the body mass index (BMI). BMI is based on a person's weight and height. It is the mass, in kilograms, divided by the square of the height in meters, which is, expressed in $\mathrm{kg} / \mathrm{m}^{2}$. Generally speaking, if the BMI exceeds 25, a person considered overweight. What is the BMI of a person being 69.0 inches tall and weight 158.0 lb .?

$23.33 \mathrm{~kg} / \mathrm{m}^{2}$

7. Give the number of protons, neutrons and electrons in each of the following species

Species	${ }^{17}{ }_{8} \mathrm{O}$	${ }^{199}{ }_{80} \mathrm{Hg}$	${ }^{200}{ }_{80} \mathrm{Hg}$	${ }^{14}{ }_{7} \mathrm{~N}^{3-}$	${ }^{54}{ }_{26} \mathrm{Fe}^{2+}$	${ }^{31}{ }_{15} \mathrm{P}^{3-}$	${ }^{107}{ }_{47} \mathrm{Ag}^{+}$
Proton	$\mathbf{8}$	80	80	7	26	15	47
Neutron	$\mathbf{9}$	119	120	7	28	16	60
Electron	$\mathbf{8}$	$\mathbf{8 0}$	$\mathbf{8 0}$	10	24	18	46

8. Europium has two naturally occurring isotopes which are Eu-151 and Eu-153. Eu-151 has a mass of 150.9198 amu and a natural abundance of 47.8%. Using the atomic mass of europium, find the mass of Eu-153.

$$
\text { ii) } \begin{aligned}
& \left(\frac{47.8}{100} \times 150.9198\right)+\left(\frac{100-47.8}{100} \times x\right)=10.964 \\
& (72.1397 \mathrm{amv})+(0.522 a)=15.964 \mathrm{amo} \\
& 0.522 x=79.8243 \mathrm{am} \\
& x=152.9201 \mathrm{am} \\
& \therefore \text { muss Eu-153 }=152.9201 \mathrm{amu}
\end{aligned}
$$

9. Calculate
a) The mass in gram, of $0.155 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}$
6.82 g
b) The number of moles of $\mathrm{C}_{4} \mathrm{H}_{10}$ in a 165 kg sample
2844.83 mol

CHEMISTRY DMKC1033

10. Melamine, which is used to make plastic items such as dishes and toys, contains 28.57% carbon, 4.80% hydrogen and 66.64% nitrogen. If the molar mass is 126 $\mathrm{g} / \mathrm{mol}$, what is the molecular formula of melamine?

CHEMISTRY DMKC1033

11. All alkali metals react with water to produce hydrogen gas and the corresponding alkali metal hydroxide. A typical reaction is that between lithium and water.

$$
\mathrm{Li}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{LiOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

a) Balance the equation.

$$
2 \mathrm{Li}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 2 \mathrm{LiOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

b) How many moles of H_{2} will be formed by the complete reaction of 6.23 moles of Li with water?

```
2 mol Li =1 mol H2
6.23 mol Li = 1/2 x 6.23 mol H2
    = 3.115 mol H2
```

c) How many grams of H_{2} will be formed by the complete reaction of 80.57 g of Li with water?

```
mol Li = 80.57\textrm{g}/6.94 g/mol
    = 11.61 mol
2 mol Li \equiv1 mol H2
11.61 mol Li = 1/211.61 mol H2
                        = 5.805 mol H2
mass = mol x molar mass
mass of H2 = 5.805 mol x 2 g/mol
    =11.61 g
```

12. Urea, $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$ is prepared by reacting ammonia with carbon dioxide:

$$
\mathrm{NH}_{3}+\mathrm{CO}_{2} \rightarrow\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \text { (not balanced) }
$$

In one process 637.2 g of NH_{3} are allowed to react with 1142 g of CO_{2}.
a) Which of the reactants is limiting reagent?

```
2NH3+ CO2 }->(\mp@subsup{\textrm{NH}}{2}{}\mp@subsup{)}{2}{}\textrm{CO}+\mp@subsup{\textrm{H}}{2}{}\textrm{O
mol NH3=637.2/17 = 37.48 -> 37.48/2 = 18.74 mol
mol CO2 = 1142/44 = 25.95 -> 25.95/1 = 25.95 mol
therefor }->\mp@subsup{\textrm{NH}}{3}{}\mathrm{ is a limiting reagent
```

b) Calculate, the mass of $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$ formed?
$2 \mathrm{~mol} \mathrm{NH}_{3} \equiv 1$ mol urea
$37.48 \mathrm{~mol} \mathrm{NH}_{3}=0.5 \times 37.48 \mathrm{~mol}$ urea
$=18.74 \mathrm{~mol}$ urea
m urea $=\mathrm{mol} x$ MW urea
$=18.74 \mathrm{~mol} \times(2[14+2]+12+16) \mathrm{g} / \mathrm{mol}=1124.4 \mathrm{~g}$

CHEMISTRY DMKC1033

13. Describe how you would prepare $5.00 \times 10^{2} \mathrm{~mL}$ of $1.75 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution starting with an 8.61 M stock solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$
$M_{i} V_{i} \quad=M_{f} V_{f}$
$V_{i} \quad=M_{\mathrm{i}} \mathrm{V}_{\mathrm{i}} / \mathrm{M}_{\mathrm{i}}$
$=\frac{(1.75 \mathrm{M})(500 \mathrm{~mL})}{8.61 \mathrm{M}} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}$
$=0.101 \mathrm{~L}$ @ 101 mL
Place 0.101 L @ 101 mL stock solution in volumetric flask 500 mL , add distilled water to give a final volume 500 mL .
14. How many milliliter of a 0.610 M NaOH solution are needed to neutralize 20.0 mL of a $1.75 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution?

$$
\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \text { (not balanced) }
$$

$2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ (balanced)
$\frac{\mathrm{MaVa}}{\mathrm{a}}=\frac{\mathrm{MbVb}}{\mathrm{b}}$
$\mathrm{Vb}=\frac{(\mathrm{Ma})(\mathrm{Va})(\mathrm{b})}{(\mathrm{Mb})(\mathrm{a})}$
$\mathrm{Vb}=\frac{(1.75 \mathrm{M})(20 \mathrm{~mL})(2)}{(0.610 \mathrm{M})(1)}$
$\mathrm{Vb}=114.75 \mathrm{~mL}$

