Atom, Molecules and Ions Chapter 2

The Atom

Atom is the basic unit of an element, made up of even smaller particles called subatomic particles.

There are three fundamental components (subatomic particles) that are important in chemistry: **Electron**, **Proton** and **Neutron**.

The **protons** and **neutrons** of an atom are packed in an extremely small nucleus.

Electrons are shown as 'clouds' around the nucleus.

Subatomic particles

Particle	Mass (g)	Charge (Coulombs)	Charge (units)
Electron	9.1 x 10 ⁻²⁸	-1.6 x 10 ⁻¹⁹	
Proton	1.67 x 10 ⁻²⁴	+1.6 x 10 ⁻¹⁹	
Neutron	1.67 x 10 ⁻²⁴	0	

mass $p = mass n = 1840 x mass e^{-1}$

Subatomic particles

Particle	Mass (g)	Charge (Coulombs)	Charge (units)
Electron (e ⁻)	9.1 x 10 ⁻²⁸	-1.6 x 10 ⁻¹⁹	-1
Proton (p ⁺)	1.67 x 10 ⁻²⁴	+1.6 x 10 ⁻¹⁹	+1
Neutron (n)	1.67 x 10 ⁻²⁴	0	0

mass $p = mass n = 1840 x mass e^{-1}$

Electron configuration is how the electrons are distributed among the various atomic orbitals in an atom.

Order of orbitals (filling) in multi-electron atom

"Fill up" electrons in lowest energy orbitals (*Aufbau principle*)

sharp, principal, diffuse, and fundamental

1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s

Atomic Number & Mass Number

 $\begin{array}{c} \text{Mass Number} \longrightarrow A \\ \text{Atomic Number} \longrightarrow Z \end{array} X \longleftarrow \text{Element Symbol} \end{array}$

Atomic Number & Mass Number

Atomic number (Z) = number of protons in nucleus

$$\begin{array}{c} \text{Mass Number} \longrightarrow A \\ \text{Atomic Number} \longrightarrow Z \end{array} X \longleftarrow \text{Element Symbol} \end{array}$$

Mass number (A) = atomic number (Z) + number of neutrons

Mass number (A) = number of protons + number of neutrons

Isotopes

Isotopes are atoms of the same element (X) with same number of protons but different numbers of neutrons in their nuclei

The term isotope is formed from the Greek roots isos (equal) and topos (place), meaning "the same place".

 $\begin{array}{c} \text{Mass Number} \longrightarrow A \\ \text{Atomic Number} \longrightarrow Z \end{array} \xrightarrow{} Element Symbol \\ \end{array}$

Isotopes of Carbon

Carbon 12, Carbon 13, Carbon 14

stable and unstable

Carbon (**C**) has 15 known isotopes, from ⁸C to ²²C

Isotopes of Hydrogen

How many protons, neutrons, and electrons are in ${}^{14}_{6}$ C?

6 protons, 8 (14 - 6) neutrons, 6 electrons

How many protons, neutrons, and electrons are in ${}^{11}_{6}$ C?

6 protons, 5 (11 - 6) neutrons, 6 electrons

Molecules & Ions

A *molecule* is an aggregate of two or more atoms in a definite arrangement held together by chemical bonds

A *diatomic molecule* contains only two atoms H_2 , N_2 , O_2 , Br_2 , HCI, CO

A *polyatomic molecule* contains more than two atoms O_3 , H_2O , NH_3 , CH_4

An *ion* is an atom, or group of atoms, that has a net positive or negative charge.

cation – ion with a positive charge If a neutral atom **loses** one or more electrons it becomes a cation.

anion – ion with a negative charge
 If a neutral atom gains one or more electrons
 it becomes an anion.

17 protons17 electrons

A monatomic ion contains only one atom

Na⁺, Cl⁻, Ca²⁺, O²⁻, Al³⁺, N³⁻

OH⁻, CN⁻, NH₄⁺, NO₃⁻

How many protons and electrons are in ${}^{27}_{13}Al^{3^+}$?

13 protons, 10 (13 – 3) electrons

How many protons and electrons are in $\frac{78}{34}$ Se²⁻?

34 protons, 36 (34 + 2) electrons

1. Give the number of protons, neutrons and electrons in each of the following species

Spesies	17 ₈ O	¹⁹⁹ 80 Hg	²⁰⁰ 80 Hg	¹⁴ 7 N ³⁻	⁵⁴ 26 Fe ²⁺	³¹ 15 P ³⁻	¹⁰⁷ 47 Ag +
Proton	8	80	80	7	26	15	47
Neutron	9	119	120	7	28	16	60
Electron	8	80	80	10	24	18	46

A *molecular formula* shows the exact number of atoms of each element in the smallest unit of a substance

An *empirical formula* shows the simplest whole number ratio of the atoms in a substance

The **structural formula** is a graphic representation of the molecular structure, showing how the atoms are arranged.

2. What are the empirical formulas of the following compounds:

Compound	C ₂ N ₂	C ₆ H ₆	P ₄O ₁₀	B ₂ H ₆	Al ₂ Br ₆	Na ₂ SO ₃
Empirical formula	CN	СН	P ₂ O ₅	BH₃	AlBr₃	Na₂SO₃

lonic compounds consist of a combination of cations and an anions

The formula is always the same as the empirical formula

The sum of the charges on the cation(s) and anion(s) in each formula unit must equal zero

Writing a Formula of Ionic Compounds

Cation Al³⁺ and anion O²⁻

$$2 \times +3 = +6$$

 Al_2O_3
 Al^{3+}
 O^{2-}

Writing a Formula of Ionic Compounds

Names and Formulas of Some Common Inorganic Cations and Anions

Cation	Anion
Aluminum (Al ³⁺)	Bromide (Br ⁻)
Ammonium (NH ₄ ⁺)	Carbonate (CO_3^{2-})
Barium (Ba ²⁺)	Chlorate (ClO_3^-)
Cadmium (Cd ²⁺)	Chloride (Cl ⁻)
Calcium (Ca ²⁺)	Chromate (CrO_4^{2-})
Cesium (Cs ⁺)	Cyanide (CN ⁻)
Chromium(III) or chromic (Cr ³⁺)	Dichromate ($Cr_2O_7^{2-}$)
Cobalt(II) or cobaltous (Co ²⁺)	Dihydrogen phosphate $(H_2PO_4^-)$
Copper(I) or cuprous (Cu ⁺)	Fluoride (F ⁻)
Copper(II) or cupric (Cu^{2+})	Hydride (H ⁻)
Hydrogen (H ⁺)	Hydrogen carbonate or bicarbonate (HCO_3^-)
Iron(II) or ferrous (Fe ²⁺)	Hydrogen phosphate $(HPO_4^{2^-})$
Iron(III) or ferric (Fe ³⁺)	Hydrogen sulfate or bisulfate (HSO_4^-)
Lead(II) or plumbous (Pb ²⁺)	Hydroxide (OH ⁻)
Lithium (Li ⁺)	Iodide (I ⁻)
Magnesium (Mg ²⁺)	Nitrate (NO_3^-)
Manganese(II) or manganous (Mn ²⁺)	Nitride (N^{3-})
Mercury(I) or mercurous (Hg ₂ ²⁺)*	Nitrite (NO_2^-)
Mercury(II) or mercuric (Hg ²⁺)	Oxide (O^{2-})
Potassium (K ⁺)	Permanganate (MnO ₄ ⁻)
Silver (Ag ⁺)	Peroxide $(O_2^{2^-})$

Naming Ionic Compounds

- Cation goes first
- anion (nonmetal), add "ide" for it ending
- Polyatomic anion doesn't need it changed

BaCl ₂	barium chloride
K ₂ O	potassium oxide
CaCO ₃	calcium carbonate
Mg(OH) ₂	magnesium hydroxide

Transition metal ionic compounds

 indicate charge on metal with Roman numerals

FeCl2 $2 \text{ Cl}^2 - 2 \text{ so Fe is } + 2$ iron(II) chlorideFeCl3 $3 \text{ Cl}^2 - 3 \text{ so Fe is } + 3$ iron(III) chlorideCr2S3 $3 \text{ S}^{-2} - 6 \text{ so Cr is } + 3 (6/2)$ chromium(III) sulfide

Molecular compounds

nonmetals + nonmetals or metalloids

The *metalloids* or semimetals share some of the properties of metals and some of the properties of nonmetals proportions.

Writing a formula of molecular compounds

1C and 2O

CO₂ (greenhouse gases)

Naming molecular compounds

- common name
 - N₂, H₂O, CH₄, C₆₀
- element further left in periodic table must write 1st
 - NF_3 , NO_2
- element closest to bottom of group must write 1st
 - SO₂
- if more than one compound can be formed from the same elements, use prefixes to indicate number of each kind of atom. Prefix mono is never used with the first element.
- last element ends in ide

Greek Prefixes Used in Naming Molecular Compounds

Prefix	Meaning
Mono-	1
Di-	2
Tri-	3
Tetra-	4
Penta-	5
Hexa-	6
Hepta-	7
Octa-	8
Nona-	9
Deca-	10

Naming Molecular Compounds

- HI hydrogen iodide
- NF₃ nitrogen trifluoride
- SO₂ sulfur dioxide
- N₂Cl₄ dinitrogen tetrachloride
- NO₂ nitrogen dioxide
- N₂O dinitrogen monoxide

Laughing gas

Acid

An *acid* can be defined as a substance that yields **hydrogen ions (H+)** when dissolved in water.

HCI

- •Pure substance, hydrogen chloride
- •Dissolved in water (H+ Cl-), hydrochloric acid

Acid

Acid without oxygen Acid with oxygen (oxoacid)

An **oxoacid** is an acid that contains hydrogen, **oxygen**, and another element.

Naming Acid

The name of an acid is based on the name of the negative ion (anion) that is part of the acid

Naming Acid without oxygen

#rule

Anion	Acid
-ide	hydroic acid

HCI H ⁺	+ CI ⁻	Anion
Hydrochloric acid	chloride	F ⁻ (fluoride) Cl ⁻ (chloride)
HCN H+	+ CN ⁻	Br^{-} (bromide) L^{-} (iodide)
Hydrocyanic acid	cyanide	CN^{-} (cyanide)

Naming Acid without oxygen

#exceptional (contain Phosphorus & Sulfur)

	Anion	Ac	id	Phosp	horus		Sulfur
	-ide	hydro	ic acid	hydro	oric ac	cid hydro	uric acid
	H Hydros	I₂S sulf <u>ur</u> io	c acid	H⁺	+ S sulf	S ²⁻ fide	<u>Anion</u> S ²⁻ (sulfide) P ³⁻ (phosphide)
Hy	H dropho	l₃P osph <u>or</u>	ic acio	H+	+ F pho	o3- osphide	

#rule

Anion	Acid
-ate	ic acid
HNO_{3} Nitric acid $H_{2}CO_{3}$ Carbonic acid	H+ + NO ₃ ⁻ nitrate $2H^+$ + CO ₃ ²⁻ carbonate $Carbonate CO_3^{2-}$ $Carbonate CO_2^{-}$ $Hypochlovite CIO^{-}$ Nitrate NO ₃ ⁻ Nitrite NO ₂ ⁻ Permanganate MuQu Phosphate POu ³⁻ Sulfate SOu ²⁻ Sulfate SOu ²⁻

Sulfite

#rule

Anion	Acid		
-ite		_ous acid	
HNO ₂ Nitrous acid HCrO ₂ Chromous acid	H+ H+	+ NO ₂ - nitrite + CrO ₂ - chromite	<u>Polyatomic Ions</u> Carbonate C03 ²⁻ Chromite Cr02 Hypochlorite C10 Nitrate N03 Nitrite N02 Permanganate MnQ Phosphate P03 ³⁻ Sulfate S03 ²⁻ Sulfite S03 ²⁻

#exceptional (contain Phosphorus & Sulfur)

	Anion	Acid	Phosphorus S		Su	lfur		
	-ate	ic acid		oric a	icid		uric acid	
	H ₂ SO ₄ Sulf <u>ur</u> ic acid		2H ⁺ + SO ₄ ²⁻ sulfate		0 ₄ ²⁻	<u>Polyatomic I</u> Carbonate Chromite Hypochlorite Nitrate Nitrite	$\frac{\text{omic Ions}}{\text{ate}}$ $\frac{\text{O3}^2}{\text{te}}$ $\frac{\text{CrO}_2}{\text{orite}}$ $\frac{\text{CrO}_2}{\text{NO}_3}$ $\frac{\text{NO}_3}{\text{NO}_2}$	
٦ŀ	H ₃ P	O ₄ oric acid	3H+	+ ph	PC osp) ₄ ³⁻ ohate	Permanganate Phosphate Phosphite Sulfate Sulfite	PO4 ³⁻ PO3 ³⁻ SO2- SO2- SO2-

#exceptional (contain Phosphorus & Sulfur)

	Anion	Acid	Phosphorus S		Su	ılfur		
	-ite	ous acid	0	rous	acid	U	rous acid	
	H ₂ SO ₃ Sulf <u>ur</u> ous acid		2H+	+ SC sulf) ₃ ²⁻ ite	<u>Polyatomic I</u> Carbonate Chromite Hypochlorite Nitrate Nitrate Nitrite Permanganate	005 (03 ²⁻ (r02 ⁻ (10 ⁻ N03 ⁻ N02 ⁻ MuQ4 ⁻
	H ₃ P	03	3H+	+	PC) ₃ ³⁻	Phosphate	P043-
Pł	nosph <u>o</u>	orous acid		ph	osp	ohite	Phosphite Sulfate Sulfite	403,2- 202- 203-

Names of Oxoacids and Oxoanions That Contain Chlorine

Acid	Anion
HClO ₄ (perchloric acid)	ClO_4^- (perchlorate)
HClO ₃ (chloric acid)	ClO_3^- (chlorate)
HClO ₂ (chlorous acid)	ClO_2^- (chlorite)
HClO (hypochlorous acid)	ClO ⁻ (hypochlorite)

A **base** can be defined as a substance that yields **hydroxide ions (OH**⁻) when dissolved in water.

