TUTORIAL 3
Name:

Instructor:

1. A sample of chlorine gas occupies a volume of 946 mL at a pressure of 726 mmHg . Calculate the pressure of the gas (in mmHg) if the volume is reduced at constant temperature to 154 mL .
2. What is the molar mass of a gas if a 3.16 g sample of gas at 0.750 atm and $45^{\circ} \mathrm{C}$ occupies a volume of 2.05 L ? (Given: $R=0.0821 \mathrm{~atm} . \mathrm{L} / \mathrm{mol} . \mathrm{K}$).

CHEMISTRY DMKC1033

3. X-ray crystal studies show that an unknown metal has a face centered cubic structure. The edge length of the unit cell is 407 pm .
a) What is the radius of the metal atom?
b) The density of the metal is $10.5 \mathrm{gcm}^{-3}$. What is the atomic mass of the metal?
4. Polonium crystallizes in a simple cubic lattice. What is the distance between nearest neighbor atoms if the first order diffraction of x-rays of $\lambda=1.785 \AA$ from the parallel faces of its unit cell occurs with an angle of $2 \theta=31.0^{\circ}$.
(Given: $1 \AA=10^{-10} \mathrm{~m}$)
5. How much heat, does it take to raise the temperature of 222 g of water from $15.0^{\circ} \mathrm{C}$ to $90.0^{\circ} \mathrm{C}$. (Given: Specific heat of water is $4.184 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$)
6. A quantity of 1.553 g of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ was burned in a constant-volume bomb calorimeter. Consequently the temperature of water rose by $6.50^{\circ} \mathrm{C}$. If the quantity of water surrounding the calorimeter was exactly 1131 g and the heat capacity of calorimeter was $2.02 \mathrm{~kJ} / \mathrm{K}$, calculate the molar heat of combustion of $\mathrm{CH}_{3} \mathrm{OH}$.

CHEMISTRY DMKC1033

7. Ethylene derived from petroleum, is used to make ethanol for use as fuel or solvent, the reaction is

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{I})
$$

Calculate $\Delta \mathrm{H}^{\circ}$ for this reaction, when the standard enthalpies of formation $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})=52.26 \mathrm{~kJ} / \mathrm{mol} ., \mathrm{H}_{2} \mathrm{O}(\mathrm{I})=-285.8 \mathrm{~kJ} / \mathrm{mol}^{2} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{I})=-277.7 \mathrm{~kJ} / \mathrm{mol}$
8. Use the following equation:

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{SO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=-562 \mathrm{~kJ} \\
\mathrm{CS}_{2}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=-1075 \mathrm{~kJ}
\end{array}
$$

Calculate the enthalpy change for the reaction

$$
\mathrm{CS}_{2}(\mathrm{I})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \quad \Delta \mathrm{H}=?
$$

