Chemistry and Measurement Chapter 1

DMKC1033

Chemistry
 study of matter and the changes it undergoes

Classification of Matter

Classification of Matter

Matter is anything that occupies space and has mass

Classification of Matter

mixture is a combination of two or more substances in which the substances retain their distinct identities.

Classification of Matter

Homogenous mixture - composition of the mixture is in the same throughout.
Heterogeneous mixture - composition is not uniform throughout.

Classification of Matter

Substance is a form of matter that has a definite composition and distinct properties.

Classification of Matter

Element is a substance that cannot be separated into simpler substances by chemical means

Total 118 elements

94 elements occur naturally on Earth. Eg: gold, aluminum, lead, oxygen, carbon

24 elements have been created by scientists.
Eg: technetium, americium, seaborgium
Homogeneous
Heterogeneous
Compounds

Classification of Matter

Compound is a substance composed of atoms of two or more different elements chemically united in fixed proportions.

Water $\left(\mathrm{H}_{2} \mathrm{O}\right)$, Glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$
Can only be separated into their pure components
(elements) by chemical means.

Classification of Matter

Classification of Matter

Classify each of the following as an element, compound, homogeneous mixtures or heterogeneous mixture.
i. Gasoline
ii. Methane
iii. Hazelnut Coffee
iv. Lead
(4 marks)

What is the differences between molecule and compound?

Molecule

2 or more same or different atoms
join together chemically. Eg. $\mathrm{N}_{2}, \mathrm{H}_{2} \mathrm{O}$

Compound

A molecule that contains at least 2 different atoms. Eg. $\mathrm{H}_{2} \mathrm{O}, \mathrm{NaCl}$

All compounds are molecules
But not all molecules are compounds

What is the differences between atom and element?

Atom
 Smallest particle of matter. Eg. H

Element
Pure substance that made up from
1 type of atom. Eg. HHH

What is the differences between element and molecule?

Element

Pure substance that made up from 1 type of atom. Eg. $\mathrm{H}_{2} \mathrm{H}_{2} \mathrm{H}_{2}$

Molecule
2 or more same or different atoms join together chemically. Eg. $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{O}$

Explain the differences between physical and chemical changes.

A physical change does not alter the composition or identity of a substance.

ice melting

sugar dissolving
in water

A chemical change alters the composition or identity of the substance(s) involved.
hydrogen gas burns in oxygen gas to form water

Units of measurement

SI Base Units

Base Quantity Name of Unit Symbol
Length
Mass

Time
Current
Temperature
Amount of substance Luminous intensity

meter

mkilogram

kgsecondamperekelvinmolecandela

S
A
K
mol
cd

Prefixes used with SI Units

Prefix	Symbol	Meaning
Tera-	T	10^{12}
Giga-	G	10^{9}
Mega-	M	10^{6}
Kilo-	k	10^{3}
Deci-	d	10^{-1}
Centi-	c	10^{-2}
Milli-	m	10^{-3}
Micro-	m	10^{-6}
Nano-	n	10^{-9}
Pico-	p	10^{-12}

mass - measure of the quantity of matter

SI unit of mass is the kilogram (kg)

$$
1 \mathrm{~kg}=1000 \mathrm{~g}=1 \times 10^{3} \mathrm{~g}
$$

weight - force that gravity exerts on an object
weight $=c \times$ mass on earth, $c=1.0$ on moon, $c \sim 0.1$

A 1 kg bar will weigh
1 kg on earth
0.1 kg on moon

Volume - SI derived unit for volume is cubic meter $\left(\mathrm{m}^{3}\right)$

$$
\begin{aligned}
& 1 \mathrm{~cm}^{3}=\left(1 \times 10^{-2} \mathrm{~m}\right)^{3}=1 \times 10^{-6} \mathrm{~m}^{3} \\
& 1 \mathrm{dm}^{3}=\left(1 \times 10^{-1} \mathrm{~m}\right)^{3}=1 \times 10^{-3} \mathrm{~m}^{3} \\
& 1 \mathrm{~L}=1000 \mathrm{~mL}=1000 \mathrm{~cm}^{3}=1 \mathrm{dm}^{3}
\end{aligned}
$$

$$
1 \mathrm{~mL}=1 \mathrm{~cm}^{3}
$$

Density - SI derived unit for density is $\mathrm{kg} / \mathrm{m}^{3}$

$$
1 \mathrm{~g} / \mathrm{cm}^{3}=1 \mathrm{~g} / \mathrm{mL}=1000 \mathrm{~kg} / \mathrm{m}^{3}
$$

$$
\text { density }=\frac{\text { mass }}{\text { volume }}
$$

$$
d=\frac{m}{V}
$$

A piece of platinum metal with a density of 21.5 $\mathrm{g} / \mathrm{cm}^{3}$ has a volume of $4.49 \mathrm{~cm}^{3}$. What is its mass?

$$
\begin{aligned}
& d=\frac{m}{V} \\
& m=d \times V=21.5 \mathrm{~g} / \mathrm{cm}^{3} \times 4.49 \mathrm{cAR}^{3}=96.5 \mathrm{~g}
\end{aligned}
$$

Comparison of the Three Temperature Scales

Express normal body temperature, $98.60{ }^{\circ} \mathrm{F}$ in:
i. Degree Celsius, ${ }^{\circ} \mathrm{C}$
ii. Kelvin, K

$$
\begin{aligned}
k & =8+273.15-\text { (1) } \\
& =37+273.15 \\
& =310.15 \mathrm{k}
\end{aligned}
$$

Factor Label Method

Factor-Label Method of Solving Problems

1. Determine which unit conversion factor(s) are needed
2. Carry units through calculation
3. If all units cancel except for the desired unit(s), then the problem was solved correctly.

How many mL are in 1.63 L ?

$$
\begin{aligned}
& 1 \mathrm{~L}=1000 \mathrm{~mL} \\
& 1.63 \nvdash \times \frac{1000 \mathrm{~mL}}{1 \nprec}=1630 \mathrm{~mL}
\end{aligned}
$$

The speed of sound in air is about $343 \mathrm{~m} / \mathrm{s}$. What is this speed in miles per hour?
meters to miles
seconds to hours
$1 \mathrm{mi}=1609 \mathrm{~m} \quad 1 \mathrm{~min}=60 \mathrm{~s} \quad 1$ hour $=60 \mathrm{~min}$

The mass of fuel in an airplane must be carefully accounted before takeoff. If a Boeing 747 contains $1.55211 \times 10^{5} \mathrm{~L}$ of fuel, what is the mass of the fuel in kilograms? (Density of the fuel $=0.768 \mathrm{~g} / \mathrm{cm}^{3}$)

$1.55211 \times 10^{5} \mathrm{~L}$	$1000 \mathrm{~cm}^{3}$	0.768 g	1 kg
	1 L	$\mathrm{~cm}^{3}$	1000 g

$=119202.048 \mathrm{~kg} @ 1.19 \times 10^{5} \mathrm{~kg}$
(4 marks)

A running track measures 1056 ft per lap. How many laps needed to run for 15.0 km ?
(Given: $1 \mathrm{mile}=5280 \mathrm{ft}, 1 \mathrm{~km}=0.6214 \mathrm{mile}$)

1 lap	5280 ft	0.6214 mile	15 km
1056 ft	1 mile	1 km	

$=46.61 \mathrm{laps}$

The commonly accepted measurement now used by dietary specialist in assessing whether a person is overweight is the body mass index (BMI). BMI is based on a person's weight and height. It is the mass, in kilograms, divided by the square of the height in meters that is, expressed in $\mathrm{kg} / \mathrm{m}^{2}$. Generally speaking, if the BMI exceeds 25, a person considered overweight. What is the BMI of a person which is 69.0 inches tall and weight 158.0 lb ? Show detail calculation using Factor Label Method. (Given: $1 \mathrm{inch}=2.54 \mathrm{~cm}, 1 \mathrm{lb}=453.59 \mathrm{~g}$).
(4 marks)

Scientific Notation

Scientific Notation

The number of atoms in 12 g of carbon: 602,200,000,000,000,000,000,000

$$
6.022 \times 10^{23}
$$

The mass of a single carbon atom in grams:
0.0000000000000000000000199

$$
1.99 \times 10^{-23}
$$

$\mathrm{N} \times 10^{n}$

N is a number between 1 and 10
n is a positive or negative integer

Scientific Notation

568.762
\leftarrow move decimal left

$$
n>0
$$

$568.762=5.68762 \times 10^{2}$

Addition or Subtraction

1. Write each quantity with the same exponent n
2. Combine N_{1} and N_{2}
3. The exponent, n, remains the same
0.00000772
\longrightarrow move decimal right

$$
n<0
$$

$0.00000772=7.72 \times 10^{-6}$

$$
\begin{array}{r}
4.31 \times 10^{4}+3.9 \times 10^{3}= \\
4.31 \times 10^{4}+0.39 \times 10^{4}= \\
4.70 \times 10^{4}
\end{array}
$$

Scientific Notation

Multiplication

1. Multiply N_{1} and N_{2}
2. Add exponents n_{1} and n_{2}
$\left(4.0 \times 10^{-5}\right) \times\left(7.0 \times 10^{3}\right)=$
$(4.0 \times 7.0) \times\left(10^{-5+3}\right)=$ $28 \times 10^{-2}=$ 2.8×10^{-1}

Division

1. Divide N_{1} and N_{2}
2. Subtract exponents n_{1} and n_{2}

Write the following in scientific notation:
i. $\quad 123456700$ grams
1.23456700×10^{8} grams@1.234567x10 ${ }^{8}$ grams
ii. 0.0001234 milligrams
1.234×10^{-4} milligrams
(4 marks)

Significant Figure

Significant Figures

-Any digit that is not zero is significant $1.234 \mathrm{~kg} \quad 4$ significant figures
-Zeros between nonzero digits are significant
 606 m 3 significant figures
-Zeros to the left of the first nonzero digit are not significant $0.08 \mathrm{~L} \quad 1$ significant figure
-If a number is greater than 1 , then all zeros to the right of the decimal point are significant
$2.0 \mathrm{mg} \quad 2$ significant figures
-If a number is less than 1, then only the zeros that are at the end and in the middle of the number are significant
0.00420 g 3 significant figures

How many significant figures are in

 each of the following measurements?24 mL
3001 g
2 significant figures
4 significant figures
$0.0320 \mathrm{~m}^{3}$
6.4×10^{4} molecules
500.0 kg

3 significant figures
2 significant figures
4 significant figures

How many SF for 1000 cm ?

The significance of trailing zeros in a number not containing a decimal point can be unclear.

It may not always be clear if a number like 1000 is precise to the nearest unit or it is only shown to the nearest hundred due to rounding.

How many SF for 1000 cm?

Some of the method to clearly state the SF of trailing zeros...

How many SF for 1000 cm?

1. An overline, sometimes also called an overbar, may be placed over the last significant figure; any trailing zeros following this are insignificant.

For example, $10 \bar{O} \mathrm{O} \mathrm{cm}$ has three significant figures

How many SF for 1000 cm?

2. Sometimes, the last significant figure of a number may be underlined.

For example, $1 \underline{0} 00 \mathrm{~cm}$ has two significant figures

How many SF for 1000 cm?

3. A decimal point may be placed after the number; indicates specifically that all significant figures are meant

For example, 1000. cm has four significant figures.

How many SF for 1000 cm?

???

Round the number to the correct number of significant figures in Table 1.1.
Table 1.1: Significant figure

Number	Rounded to four significant figures	Rounded to two significant figures	Rounded to one significant figures
84.0505	$\mathbf{8 4 . 0 5}$	$\mathbf{8 4}$	$\mathbf{8 0}$
0.0904090	$\mathbf{0 . 0 9 0 4 1}$	$\mathbf{0 . 0 9 0}$	$\mathbf{0 . 0 9}$

(6 marks)

Significant Figures

Addition or Subtraction

The answer cannot have more digits to the right of the decimal point than any of the original numbers.
$\frac{89.332}{+1.1} 9$ one significant figure after decimal point
$3.70 \longleftarrow$ two significant figures after decimal point
-2.9133
0.7867 round off to 0.79

Significant Figures

Multiplication or Division

The number of significant figures in the result is set by the original number that has the smallest number of significant figures

ORDER OF OPERATIONS

The order of operations tells you the sequence to follow when you are performing operations in a mathematical expression.

D	\square	Ma D	\triangle S
1	2	3	4
Parentheses	Exponents	Mulfiply or Divide	Add or Subtract
0	02	$\mathrm{y} \text { or } \bullet$	or

Carry out the following operations with the correct number of significant figures:
a) $(1.600-20.0) \times(1.004+3.0300)$
b) $(0.00510 \times 2.020)-(0.2210 \div 2.000)$
c) $\left(4.020 \times 10^{6} \mathrm{dm}\right) \div\left(7.70 \times 10^{7} \mathrm{dm}\right)$
(2 marks)
(2 marks)

-74.2256 © -74.3912
$=-74.2(3 \mathrm{Sf})$ © $=7+4$ (1)
(6) $(0.0103)^{39}-(0.1105)^{\frac{1}{2}}-\left(\frac{1}{2}\right)$
$=-0.1002\left(4 t_{7}\right)$
(c) 0.052207
$\approx 0.0522 \quad$ (35t)
(e) $5.22 \times 10^{-2} \quad(351)$ (2)
(c) $0522 \times \omega^{-1}$

Significant Figures

Exact Numbers

Numbers from definitions or numbers of objects are considered to have an infinite number of significant figures

The average of three measured lengths; 6.64, 6.68 and 6.70 ?

$$
\frac{6.64+6.68+6.70}{3}=6.67333=6.67=7
$$

Because $\mathbf{3}$ is an exact number

