CHEMISTRY - DMKC1033

CHEMISTRY: THE STUDY OF CHANGE

Chapter

IMRAN SYAKIR BIN MOHAMAD | MOHD HAIZAL BIN MOHD HUSIN
FACULTY OF MECHANICAL TECHNOLOGY AND ENGINEERING

Chemistry is the study of matter and the changes it undergoes

1. Matter is anything that occupies space and has mass.
2. A substance is a form of matter that has a definite composition and distinct properties.
water, ammonia, sucrose, gold, oxygen

A mixture is a combination of two or more substances in which the substances retain their distinct identities.

1. Homogenous mixture - composition of the mixture is the same throughout. soft drink, milk, solder

2. Heterogeneous mixture - composition is not uniform throughout.

cement, iron filings in sand

Physical means can be used to separate a mixture into its pure components.

distillation

magnet

An element is a substance that cannot be separated into simpler substances by chemical means.

- 118 elements have been identified
- 92 elements occur naturally on Earth
 gold, aluminum, lead, oxygen, carbon
- 26 elements have been created by scientists technetium, americium, seaborgium

A compound is a substance composed of atoms of two or more elements chemically united in fixed proportions.

Compounds can only be separated into their pure components (elements) by chemical means.

Water $\left(\mathrm{H}_{2} \mathrm{O}\right) \quad$ Glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$

Ammonia $\left(\mathrm{NH}_{3}\right)$

Classification of Matter

Three States of Matter

Physical or Chemical?

A physical change does not alter the composition or identity of a substance.
ice melting

sugar dissolving in water

A chemical change alters the composition or identity of the substance(s) involved.
hydrogen gas burns in oxygen gas to form water

Matter - anything that occupies space and has mass.

mass - measure of the quantity of matter
SI unit of mass is the kilogram (kg)

$$
1 \mathrm{~kg}=1000 \mathrm{~g}=1 \times 10^{3} \mathrm{~g}
$$

weight - force that gravity exerts on an object
weight $=c \times$ mass on earth, $c=1.0$ on moon, $c \sim 0.1$

A 1 kg bar will weigh
1 kg on earth
0.1 kg on moon
Table 1.2 SI Base Units
Base Quantity

Name of Unit SymbolLengthMassTimeCurrentTemperatureAmount of substanceLuminous intensity
meter m
kilogram
kg
second s
ampere A
kelvin
mole
candela

Table 1.3		
Prefixes Used with SI Units		
Prefix	Symbol	Meaning
Tera-	T	10^{12}
Giga-	G	10^{9}
Mega-	M	10^{6}
Kilo-	k	10^{3}
Deci-	d	10^{-1}
Centi-	c	10^{-2}
Milli-	m	10^{-3}
Micro-	H	10^{-6}
Nano-	n	10^{-9}
Pico-	p	10^{-12}

Volume - SI derived unit for volume is cubic meter $\left(\mathrm{m}^{3}\right)$

$$
\begin{aligned}
& 1 \mathrm{~cm}^{3}=\left(1 \times 10^{-2} \mathrm{~m}\right)^{3}=1 \times 10^{-6} \mathrm{~m}^{3} \\
& 1 \mathrm{dm}^{3}=\left(1 \times 10^{-1} \mathrm{~m}\right)^{3}=1 \times 10^{-3} \mathrm{~m}^{3} \\
& 1 \mathrm{~L}=1000 \mathrm{~mL}=1000 \mathrm{~cm}^{3}=1 \mathrm{dm}^{3}
\end{aligned}
$$

Density - SI derived unit for density is $\mathrm{kg} / \mathrm{m}^{3}$

$$
1 \mathrm{~g} / \mathrm{cm}^{3}=1 \mathrm{~g} / \mathrm{mL}=1000 \mathrm{~kg} / \mathrm{m}^{3}
$$

$$
\text { density }=\frac{\text { mass }}{\text { volume }} \quad d=\frac{m}{V}
$$

A piece of platinum metal with a density of 21.5 $\mathrm{g} / \mathrm{cm}^{3}$ has a volume of $4.49 \mathrm{~cm}^{3}$. What is its mass?

Comparison of the Three Temperature Scales

Convert $172.9^{\circ} \mathrm{F}$ to degrees Celsius.

Scientific Notation

The number of atoms in 12 g of carbon: 602,200,000,000,000,000,000,000

$$
6.022 \times 10^{23}
$$

The mass of a single carbon atom in grams:
0.0000000000000000000000199

$$
1.99 \times 10^{-23}
$$

$\mathrm{N} \times 10^{n}$

N is a number between 1 and 10
n is a positive or negative integer

Scientific Notation

568.762
\leftarrow move decimal left

$$
n>0
$$

$568.762=5.68762 \times 10^{2}$

Addition or Subtraction

1. Write each quantity with the same exponent n
2. Combine N_{1} and N_{2}
3. The exponent, n, remains the same
0.00000772
\longrightarrow move decimal right

$$
n<0
$$

$0.00000772=7.72 \times 10^{-6}$

$$
\begin{array}{r}
4.31 \times 10^{4}+3.9 \times 10^{3}= \\
4.31 \times 10^{4}+0.39 \times 10^{4}= \\
4.70 \times 10^{4}
\end{array}
$$

Scientific Notation

Multiplication

1. Multiply N_{1} and N_{2}
2. Add exponents n_{1} and n_{2}

$$
\begin{array}{r}
\left(4.0 \times 10^{-5}\right) \times\left(7.0 \times 10^{3}\right)= \\
(4.0 \times 7.0) \times\left(10^{-5+3}\right)= \\
28 \times 10^{-2}= \\
2.8 \times 10^{-1}
\end{array}
$$

Division

1. Divide N_{1} and N_{2}
2. Subtract exponents n_{1} and n_{2}
$8.5 \times 10^{4} \div 5.0 \times 10^{9}=$
$(8.5 \div 5.0) \times 10^{4-9}=$ 1.7×10^{-5}

Significant Figures

-Any digit that is not zero is significant
$1.234 \mathrm{~kg} \quad 4$ significant figures
-Zeros between nonzero digits are significant

$606 \mathrm{~m} \quad 3$ significant figures
-Zeros to the left of the first nonzero digit are not significant
$0.08 \mathrm{~L} \quad 1$ significant figure
-If a number is greater than 1 , then all zeros to the right of the decimal point are significant
$2.0 \mathrm{mg} \quad 2$ significant figures
-If a number is less than 1 , then only the zeros that are at the end and in the middle of the number are significant
0.00420 g 3 significant figures

How many significant figures are in

 each of the following measurements?24 mL

3001 g
$0.0320 \mathrm{~m}^{3}$
6.4×10^{4} molecules

560 kg

Significant Figures

Addition or Subtraction

The answer cannot have more digits to the right of the decimal point than any of the original numbers.

```
89.332
+1.1 - one significant figure after decimal point
90.432 round off to 90.4
```

$3.70 \longleftarrow$ two significant figures after decimal point
-2.9133
0.7867 round off to 0.79

Significant Figures

Multiplication or Division

The number of significant figures in the result is set by the original number that has the smallest number of significant figures

Significant Figures

Exact Numbers

Numbers from definitions or numbers of objects are considered to have an infinite number of significant figures

The average of three measured lengths; 6.64, 6.68 and 6.70 ?

$$
\frac{6.64+6.68+6.70}{3}=6.67333=6.67=7
$$

Because
is an exact number

Factor-Label Method of Solving Problems

1. Determine which unit conversion factor(s) are needed
2. Carry units through calculation
3. If all units cancel except for the desired unit(s), then the problem was solved correctly.

How many mL are in 1.63 L ?

The speed of sound in air is about $343 \mathrm{~m} / \mathrm{s}$. What is

 this speed in miles per hour?| Q | A |
| :---: | :---: |
| $1.267 \times 42 \times 0.9963$ | |
| $(63.7 \times 49) / 6.664$ | |
| $\sqrt{2} .43$ | |
| $0.00627+0.1956+0.00029$ | |
| $(4 \times 972)+(76.4 \times 29.3)-(12 \times 7)$ | |

Q	
Liquid ethane boils at $-89^{\circ} \mathrm{C}$. What is its boiling point on the Kelvin scale?	
What is the volume of 755 g of a material with a density of $2.564 \mathrm{~g} / \mathrm{mL}$?	
Depending upon the amount of fat a person has, the human body has a density of about $0.95 \mathrm{~g} / \mathrm{cm}^{3}$.	
If a person weighed 150 lbs, what would be their volume in cm^{3} ?	

