

اونيوم سيتي تيڪنيڪ مليسيا ملاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA

IMRAN SYAKIR BIN MOHAMAD | MOHD HAIZAL BIN MOHD HUSIN

FACULTY OF MECHANICAL TECHNOLOGY AND ENGINEERING

Chemistry is the study of matter and the changes it undergoes

- 1. *Matter* is anything that occupies space and has mass.
- 2. A *substance* is a form of matter that has a definite composition and distinct properties.

water, ammonia, sucrose, gold, oxygen

A *mixture* is a combination of two or more substances in which the substances retain their distinct identities.

1. *Homogenous mixture* – composition of the mixture is the same throughout.

soft drink, milk, solder

2. *Heterogeneous mixture* – composition is not uniform throughout.

cement, iron filings in sand

Physical means can be used to separate a mixture into its pure components.

distillation

magnet

An *element* is a substance that cannot be separated into simpler substances by *chemical means*.

- 118 elements have been identified
 - 92 elements occur naturally on Earth gold, aluminum, lead, oxygen, carbon
 - 26 elements have been created by scientists

technetium, americium, seaborgium

A *compound* is a substance composed of atoms of two or more elements chemically united in fixed proportions.

Compounds can only be separated into their pure components (elements) by *chemical* means.

Water (H₂O)

Glucose ($C_6H_{12}O_6$)

Ammonia (NH₃)

Classification of Matter

Three States of Matter

Physical or Chemical?

A *physical change* does not alter the composition or identity of a substance.

ice melting	sugar dissolving
	in water

A *chemical change* alters the composition or identity of the substance(s) involved.

hydrogen gas burns in oxygen gas to form water

Matter - anything that occupies space and has mass.

mass - measure of the quantity of matter

SI unit of mass is the *kilogram* (kg)

weight – force that gravity exerts on an object

weight = $c \times mass$

on earth, c = 1.0

on moon, *c* ~ 0.1

A 1 kg bar will weigh 1 kg on earth 0.1 kg on moon

Table 1.2 SI Base Units

Base Quantity	Name of Unit	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	S
Current	ampere	Α
Temperature	kelvin	K
Amount of substance	mole	mol
Luminous intensity	candela	cd

Table 1.3	able 1.3 Prefixes Used with SI Units		
Prefix	Symbol	Meaning	
Tera-	Т	10 ¹²	
Giga-	G	10 ⁹	
Mega-	Μ	10 ⁶	
Kilo-	k	10 ³	
Deci-	d	1 0 ⁻¹	
Centi-	С	10 ⁻²	
Milli-	m	10 ⁻³	
Micro-	μ	10 ⁻⁶	
Nano-	n	10 ⁻⁹	
Pico-	р	10 ⁻¹²	

Volume – SI derived unit for volume is cubic meter (m³)

$$1 \text{ cm}^{3} = (1 \text{ x } 10^{-2} \text{ m})^{3} = 1 \text{ x } 10^{-6} \text{ m}^{3}$$
$$1 \text{ dm}^{3} = (1 \text{ x } 10^{-1} \text{ m})^{3} = 1 \text{ x } 10^{-3} \text{ m}^{3}$$
$$1 \text{ L} = 1000 \text{ mL} = 1000 \text{ cm}^{3} = 1 \text{ dm}^{3}$$
$$\boxed{1 \text{ mL} = 1 \text{ cm}^{3}}$$

1 liter

Volumetric flask

Density – SI derived unit for density is kg/m³ 1 g/cm³ = 1 g/mL = 1000 kg/m³

density =
$$\frac{\text{mass}}{\text{volume}}$$
 $d = \frac{m}{V}$

A piece of platinum metal with a density of 21.5 g/cm³ has a volume of 4.49 cm³. What is its mass?

Convert 172.9°F to degrees Celsius.

Scientific Notation The number of atoms in 12 g of carbon: 602,200,000,000,000,000,000,000 6.022 x 10²³

The mass of a single carbon atom in grams:

1.99 x 10⁻²³

N is a number between 1 and 10

n is a positive or negative integer

Scientific Notation

568.762 \leftarrow move decimal left n > 0568.762 = 5.68762 x 10²

Addition or Subtraction

- 1. Write each quantity with the same exponent *n*
- 2. Combine N_1 and N_2
- 3. The exponent, *n*, remains the same

0.00000772 → move decimal right *n* < 0 0.00000772 = 7.72 x 10⁻⁶

 $4.31 \times 10^{4} + 3.9 \times 10^{3} =$ $4.31 \times 10^{4} + 0.39 \times 10^{4} =$ 4.70×10^{4}

Scientific Notation

Multiplication

- 1. Multiply N_1 and N_2
- 2. Add exponents n_1 and n_2

 $(4.0 \times 10^{-5}) \times (7.0 \times 10^{3}) =$ $(4.0 \times 7.0) \times (10^{-5+3}) =$ $28 \times 10^{-2} =$ 2.8×10^{-1}

<u>Division</u>

- 1. Divide N_1 and N_2
- 2. Subtract exponents n_1 and n_2

 $8.5 \times 10^{4} \div 5.0 \times 10^{9} =$ $(8.5 \div 5.0) \times 10^{4-9} =$ 1.7×10^{-5}

•Any digit that is not zero is significant

- 1.234 kg 4 significant figures
- •Zeros between nonzero digits are significant

606 m 3 significant figures

•Zeros to the left of the first nonzero digit are **not** significant

0.08 L 1 significant figure

•If a number is greater than 1, then all zeros to the right of the decimal point are significant

2.0 mg 2 significant figures

•If a number is less than 1, then only the zeros that are at the end and in the middle of the number are significant

0.00420 g 3 significant figures

How many significant figures are in each of the following measurements?

24 mL

3001 g

0.0320 m³

6.4 x 10⁴ molecules

560 kg

Addition or Subtraction

The answer cannot have more digits to the right of the decimal point than any of the original numbers.

 89.332
 +1.1
 ←
 one significant figure after decimal point

 90.432
 ←
 round off to 90.4

3.70 ← two significant figures after decimal point -2.9133

0.7867 ← round off to 0.79

Multiplication or Division

The number of significant figures in the result is set by the original number that has the *smallest* number of significant figures

Exact Numbers

Numbers from definitions or numbers of objects are considered to have an infinite number of significant figures

The average of three measured lengths; 6.64, 6.68 and 6.70?

$$\frac{6.64 + 6.68 + 6.70}{3} = 6.67333 = 6.67 \stackrel{>}{=} 7$$
Because
Because
is an exact number

Factor-Label Method of Solving Problems

- 1. Determine which unit conversion factor(s) are needed
- 2. Carry units through calculation
- 3. If all units cancel except for the desired unit(s), then the problem was solved correctly.

How many mL are in 1.63 L?

The speed of sound in air is about 343 m/s. What is this speed in miles per hour?

Q	Α
1.267 x 42 x 0.9963	
(63.7 x 49) / 6.664	
√ 7.43	
0.00627 + 0.1956 + 0.00029	
(4 x 972) + (76.4 x 29.3) – (12 x 7)	

Q	Α
Liquid ethane boils at -89°C. What is its boiling point on the Kelvin scale?	
What is the volume of 755 g of a material with a density of 2.564 g/mL?	
Depending upon the amount of fat a person has, the human body has a density of about 0.95 g/cm ³ . If a person weighed 150 lbs, what would be their volume in cm ³ ?	