
 
 
 
 

Conference Proceedings 
Bornoe National Conference 2019 

(BorNCe 2019) 

 

 

 

 

 

 

 

Editors 
 

Lau Ong Yee 
Blangkat Ahmad Basimin 

Ong Tze Ching  
Lim Che Chien 

 

 

 

 

 

 

 

 

 



Editors: 

Lau Ong Yee, Blangkat Ahmad Basimin, Ong Tze Ching, Lim Che Chien  

Politeknik Kuching Sarawak, Malaysia 

 
 
Published by: 

Politeknik Kuching Sarawak 

KM 22, Jalan Matang, 

93050, Kuching,  

Sarawak, MY 

Email: poliku.info@poliku.edu.my 

http://www.poliku.edu.my 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A Catalogue record for this ebook is available from the POLIKU Library 
http://library.poliku.edu.my/ 
 
eISBN: 978-967-0797-87-8 
 
 

The texts of the papers in this volume were set individually by the authors 
or under their supervision. Only minor corrections to the text may have 
been carried out by the publisher. 

 
No responsibility is assumed by the Publisher, the Editor and Authors for any injury and/or damage 
to persons or property as a matter of product liability, negligence or otherwise, or from any use or 
operation of any methods, products, instructions or ideas contained in the material herein. The 
publisher does not necessary endorse the ideas held, or views expressed by the editors or Authors of 
the material contained in its publications. 
 
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or 
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or 
otherwise, without the prior written permission of the Publisher. 



 

 

The effects of Electromagnetic Interference from Machines 
towards Classification of EMG Signals within an Industrial 

Environment
 

Zinvi Fu 
Dept. of Mech. Eng. 

Politeknik Kota Kinabalu 
Kota Kinabalu, Malaysia 
zinvifu@polikk.edu.my

A. Y. Bani Hashim  
Dept. of Robotics & Automation,  

Fac. of Mfg. Eng.  
Universiti Teknikal Melaka 

Malaysia 
Melaka, Malaysia 

yusairi@utem.edu.my

Z. Jamaludin 
Dept. of Robotics & Automation,  

Fac. of Mfg. Eng.  
Universiti Teknikal Melaka 

Malaysia 
Melaka, Malaysia 

zamberi@utem.edu.my

Imran Syakir Mohamad  
Dept. of Dip. Studies 
Fac. of Mech. Eng.  

Universiti Teknikal Melaka 
Malaysia 

Melaka, Malaysia 
imran@utem.edu.my 

 
 

Abstract - The electromyographic signal (EMG) is a low level 
bioelectric signal which originates from the contraction of muscles. 
The viability of EMG as a control signal is dependent on various 
factors, one being easily corruptible by interference from 
electromagnetic radiating devices. Moreover, in an industrial 
environment, the power line is prone to noise and spikes from 
operating machines. This research aims to investigate the extent of 
the interference of electrical noise towards the EMG signal, and 
characterize the noise which couples to the human body. The EMG 
data of selected gestures from the forearm of 20 subjects were 
acquired while operating selected manufacturing machines. 
Subsequently, time domain feature extraction and classification 
was performed unto the signals. The results indicate that noise 
intrusion from manufacturing machines into the EMG signal is 
minimal, and only affects gestures with very low amplitude. As a 
conclusion, it has been demonstrated that with modern EMG 
acquisition and good isolation, the EMG signal can be used in an 
electrically noisy industrial environment. 
 
Keywords – electromyography, electromagnetic interference, lower 
forearm, industrial machines, noise, classification 
 

I.  INTRODUCTION 
The electromyogram (EMG) is an electrical biosignal which 
manifests in conjunction with muscle contraction. The EMG is 
a signal with low amplitude, and is thus, susceptible to 
degradation due to interference. From the human body, EMG 
interference sources originate from muscle crosstalk, motion 
artifacts and ECG contamination. The EMG signal is further 
prone to electrical interference from power line interference 
(PLI) [1], [2] and electromagnetic interference (EMI) from 
machines and equipment [3], [4]. PLI and EMI can couple onto 
the EMG signal through the human body. While PLI is widely 
acknowledged and studied, the effect of electromagnetic 
radiation towards EMG classification is examined on a lesser 
degree. Nonetheless, there are recent researches on the issue. 
Various means of filtering was proposed [3], [5][6] to mitigate 
EMI degradation. 

The EMG has many applications; It is used for motor-neuron 
diagnosis [7], [8], muscle fatigue [9] and gesture prediction  

[10]. In many applications, the main goal of EMG analysis is to 
perform classification [4], [11]. The aim of classification is to 
categorize the EMG signals according to their feature set. 
Therefore, the acquired signal must be of highest quality as it is 
the first process in the chain. As reported in [12], the 
elimination of EMI in the form of Gaussian noise shows 
considerable improvement in classification accuracy of up to 
10%.  

Figure 1. Normalized power spectrum for an EMG recorded in a 
noisy clinical environment.  The spikes represent the interfering 

noises. The most significant contribution is the 50 Hz PLI.  However, 
other sources are present too. [3] 

Although existing filtering methods are effective in reducing 
the effect of EMI noise within their effective bandwidth, the 
interfering EMI noise in an actual working environment is 
unpredictable and may cover a wide range over frequency 
domain. As shown in Figure 1, the spikes represent the 
fundamental frequency of the noises created by the electronic 
equipment in a clinical environment. Therefore, the application 
of any noise suppressing must account for the EMI noise profile 
of the intended environment.  
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Open Close Thumb OK  
Figure 2. Gestures performed for classification. There are six wrist gestures: FLX, EXT, ABD, ADD, OPN and CLS; and three finger gestures: 

FIN, TMB, and OKE. The gestures were recorded in sequence with the arm down in natural position. 

 
In existing literature, good EMG acquisition is normally 
performed in controlled environments with medical grade 
equipment [13] [14]. Therefore, there is little data to show the 
extent of EMI in practical working environments. Much like the 
equipment in a clinical environment, industrial machines emit 
considerable EMI noise which can couple onto the human body. 
We build upon the issues mentioned heretofore to determine if 
the EMG signal as a control is affected by the EMI noise in an 
industrial setting.  

This study aims to assess the impact of EMI towards the 
classification the EMG signals. The objective of this study is to 
perform classification on EMG signals from subjects who 
performed gestures with the lower forearm in proximity of 
selected manufacturing machines.     

II. METHODS 
Six pairs of EMG electrodes were attached to the lower forearm 
of a group of subjects. The subjects performed nine gestures in 
successions and the EMG was recorded into six individual 
channels. The procedure was repeated with the ubjects in 
proximity and in contact with some manufacturing machines. 
After that, basic filtering followed by dimensional reduction 
and classification was performed to classify the signals.   

A. Subject demographics 
For the experiment, 20 subjects were selected. The sample 
consisted of 10 male and 10 female subjects. The subjects 
agreed to participate at will and have signed the consent form. 
Generally, most subjects are young within the age of 24-42 with 
mean age of 30. The subjects BMI range from 15 to 32 with a 
mean of 23, with 55% having a normal BMI class. No subjects 
reported any accident and pain associated with the wrist and 
finger. However, two subjects one male and female, reported 
having mild essential tremor. 

B. Equipment used 
We developed an EMG amplifier for this experiment. The EMG 
amplifier is based on INA121P instrumentation amplifier and 
has a working CMRR of 78.64 dB and adjustable gain of 250. 
Basic filtering incorporated into the design consists of a band 

pass filter with the range of 18.97 Hz to 709 Hz. More details 
about our design can be found in [15] and [16].  

Ag-Cl wet electrodes were used in this experiment. Each 
channel consists of two electrodes. A reference electrode is 
attached to the elbow. A shielded cable was used to connect the 
EMG amplifier to the electrodes.   

The data was acquired with the National Instruments NI-cDAQ 
9178 data acquisition unit with the NI9205 module, sampled at 
5 kHz and Labview as the user interface. Post processing was 
done with the Matlab 2010 software.   
 

  

(a) (b) 

  

(c) (d) 
Figure 3. The machines in study (a) lathe machine, (b) robot arm, (c) 
CNC machine, (d) the placement of electrodes on the lower forearm. 

Three machines were selected for this study are commonly used 
in an industrial environment, shown in Figure 3. They consist 
of (a) lathe machine, (b) robot arm and (c) CNC machine.   

C. Experimental Procedures  
Prior attaching electrodes, the subject skin was cleaned with 
alcohol but not shaved. Figure 3 (d) shows the setup of the 
electrode channels. Then, six pairs of electrodes were placed 
evenly around the lower forearm of the left hand. The subjects 
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were asked to perform nine gestures, which in sequence are flex 
(FLX), extend (EXT), abduct (ABD), adduct (ADD), open 
(OPN), close (CLS), finger (FIN), OK (OKE) and thumb 
(TMB). The gesture sequence was performed with the right 
hand in down neutral position. The left hand was used to operate 
the machines.  

Each subject performed the gestures in Figure 1 at distances of 
2 m, 1 m, and 0 m (contact) from the machines. Two readings 
were taken at each step, one when the machine is on and 
another when it is off. 
 

Figure 4. Sample raw EMG signal from a subject. The subject is 24 years of 
age, female and has an BMI of 24.32. Some ECG interference is picked up in 

Channel 5 and Channel 6. 

D. Dimensional reduction and feature extraction 
The time domain EMG data is a one dimensional stochastic 
time varying signal. To process the data, several steps were 
involved. First the data was linear rectified and applied with a 
10 Hz linear envelope. Then, the peak amplitude time domain 
feature was selected to represent the data.  

Principle component analysis (PCA) is a useful tool to reduce 
the dimensionality of the EMG signal. After application of 
PCA, the final classification was performed with linear 
discriminant analysis (LDA). PCA and LDA are established 
and reliable methods used widely in biosignal analysis [17], 
[18].    

III. RESULTS 
A sample of the acquired EMG data is shown in Figure 4. The 
gestures were performed in succession and it is evident that 
every gesture produces distinctively different gestures. 
However it is difficult to distinguish the gestures by EMG 
waveforms solely from visually observing the raw data. Figure 
5 shows the EMG signal distribution as a gradient display. The 
plot was obtained following rectification and linear envelope. 
The strength (amplitude) of the signal is shown by the colour. 
Red signifies high amplitude while weak signals are coloured 
dark blue. The plot suggests that most gestures registers 
different EMG data field.  

 

Figure 5. Linear enveloped EMG output of the nine gestures. The sample 
shown here show here is from subject F01.  The EMG peaks represent the 

peak contraction during the gestures. The two sets EMG patterns show some 
similarity in terms of the output levels. 

We repeated the gesture sequence on the three machines. Table 
1. Only the robot arm causes an increase in baseline noise. This 
happens when the subject is holding the teach pendent and 
activating the robot by pushing the switch. In this case, the robot 
arm produced an increase in baseline noise from 0.004 V to 
0.009 V. Since the EMG amplifier, computer and the data 
acquisition device were powered by an isolated power supply 
line, it is clear that the noise from the robot has coupled to the 
body of the subject through the teach pendent.   

Table 1. Results of baseline noise of manufacturing machines in study. No 
change was observed in the lathe machine and CNC machine. Only the robot 

arm produced EMI which caused interference to the EMG. 

Type of 
machine 

Average baseline 
noise when machine 
is on, at distance 

Baseline noise when 
machine is operated 
in contact ( 0 m) 

2 m 1 m 
Robot arm 0.004 V 0.004 V 0.009 V 
Lathe 
machine 

0.004 V 0.004 V 0.004 V 

CNC machine 0.004 V 0.004 V 0.004 V 
 
A sample of the linear envelope gesture sequence during robot 
operation is shown in Figure 6. The baseline noise only increase 
when the robot is activated by pressing the teach pendent 
switch. The resulting  floor noise is increased from 0.004 V to 
0.009 V. Most gestures are still distinct, as there is enough 
amplitude headroom above the noise level. Only the finger 
gestures with lower amplitude are buried by the noise.

 

 

 

Gestures

C
ha

nn
el

s

Color plot of multi-channel EMG signal amplitude, subject F01

FLX EXT ABD ADD OPN CLS FIN OKE TMB

1

2

3

4

5

6

-0.5

0

0.5

  

 a)

-0.5

0

0.5

  

 b)

-0.5

0

0.5

  

 c)

-0.5

0

0.5

  

 d)

-0.5

0

0.5

  

 e)

0 5 10 15 20 25 30
-0.5

0

0.5

  

 f)

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

FLX      EXT       AB    AD       OP      CLS  "1"    "OK"   "TMB"

Channel 1

19



 

 

 

Figure 6. Classification results with teach pendant off as training data (top) and teach pendant on as test data (bottom). Generally the classification accuracy of the 
wrist gestures are consistent while the finger gestures are deteriorated. This is due to the lower dynamic range of the finger gestures.

 

Figure 7. Sample linear enveloped EMG signals showing the effects of 
activating the robot teach pendant. Of all machines in study, only the robot 

affects the EMG signal by introducing a baseline noise of approximately 0.01 
V. As a result, the dynamic range of the lower level finger gestures (FIN, 

OKE, TMB) are diminished. 
 

Classification was performed with the clean signal as training 
data, and the contaminated signal as test data. The results are 
almost identical, with the exception of a significant drop in 
classification accuracy of the FIN, OKE and TMB gestures. 

The contaminant signal was analysed with Fast Fourrier 
Transform (FFT), as shown in . Figure 7. With the arm at rest, 

the noise is mainly from the 50 Hz power line noise and its 
150 Hz harmonics. However with the robot activated, there 
was an increase in not only the power line noise, but also an 
introduction of a 200 Hz and 300 Hz signal.  

 

Figure 8. Frequency domain plot of baseline signal during rest. When the 
robot teach pendant is off, only the 50 Hz common-mode signal and its 150 

Hz harmonics is present. Switching on the teach pendant introduces a 200 Hz 
and 300 Hz signal into the signal. 

Our interest now lies in the classification results of the data 
from the robot arm. Classification is performed not only across 
the gestures, but also encompasses the 20 subjects. In other 
words, for instance the FLX having a score of 75 % during 
‘robot off’ state means that 75 % of the subjects produced the 
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same EMG profile for the gesture. The OPN, CLS and FIN 
gestures has lower classification accuracies, due of the higher 
variance of signals among the subjects.  

Table 2. Tabulated classification accuracy comparison when the robot is on 
and off. The finger gestures are affected more than the wrist gestures. 

 Classification accuracy, % 
 Robot off Robot on 

FLX 75 70 
EXT 80 80 
ABD 75 90 
ADD 70 80 
OPN 45 45 
CLS 35 30 
FIN 60 45 
OKE 95 40 
TMB 75 30 

Mean accuracy 68 57 

Figure 8 shows the detailed LDA classification of the all 
subjects when the robot arm is in on and off state. Each gesture 
consists of 20 stems, which represents the 20 subjects. 
Misclassification occurs more during the OPN and CLS 
gestures. The red line shows the expected class. The stem 
marker intersection with the red line shows a correct 
classification result.    

When the robot is off, classification accuracy is generally very 
high, with results over 70 % with the exception of the gestures 
OPN, CLS and FIN. When the robot is on, the baseline noise 
increases and interferes with the EMG signals. As a result, the 
classifier could not differentiate between the lower level signals 
of the finger gestures due to the lack of dynamic range.    

IV. CONCLUSION 
In this paper we have shown that most manufacturing machines 
do not produce significant noise that can interfere with the 
EMG signals. Therefore the EMG signal can be used as a 
control signal within a working environment. In our 
experiment, we discovered only the robot arm is a cause for 
concern. We have also demonstrated that the EMG signals are 
generally robust to EMI.  

In order to use EMG as a practical control signal in an industrial 
environment, we recommend that the gestures used produce 
signals of high strength. Next, a study on the the noise profile 
of the working environment is crucial so that the appropriate 
filters can be designed. In any case, the PLI is the bigger noise 
contributor, and together with other noises, can be eliminated 
with notch filters.  
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