GUIDE TO CHEMISTRY PRACTICALS

QUESTIONS AND ANSWERS TO SELECTED NECTA PRACTICALS
 1990-2006

TABLE OF CONTENTS

Introduction Page 3

Notes on Units and Formulas Page

Questions

Acid-Base Titration
Question 1 (NECTA 1999)
Question 2 (NECTA 1995)
Page 7

Question 3 (NECTA 2006) Page 9
Question 4 (NECTA 1994) Page 10

Redox Titration

Question 5 (NECTA 1993)
Page 11
Question 6 (NECTA 1997) Page 13
Question 7 (NECTA 2003) Page 14
Question 8 (NECTA 2005)
Question 9 (NECTA 1990)
Page 16

Reaction Rate

Question 10 (NECTA 1990)
Question 11 (NECTA 2000)
Question 12 (NECTA 1992)
Question 13 (NECTA 1999)
Question 14 (NECTA 1994)

Page 17
Page 18
Page 19
Page 20
Page 22

Partition Coefficient

Question 15 (NECTA 2006) Page 23

Answers

Question 1
Page 25
Question 2
Page 27
Question 3
Page 29
Question 4
Page 30
Question 5
Page 32
Question 6
Page 34
Question 7
Page 35
Question 8
Question 9
Question 10
Question 11
Question 12
Question 13
Page 45
Question 14
Page 47
Question 15
Page 49

Introduction

The purpose of this booklet is to guide A-level chemistry students through the questions that are likely to appear on NECTA Paper 3, the practical paper. This booklet is not a replacement for the actual practical; it is very important that students are able to perform the practical on their own,
and have lots of practice with experimental procedures and data collection. Instead, this booklet is meant to help students with the calculations and questions that come after the data has been collected.

How to use this booklet

The first part of this booklet contains 15 practical questions, all of them from past NECTA exams. The questions are written exactly as they are written on the NECTA exams. As you read the procedure, imagine that you are performing the experiment yourself. Ask yourself: What colour change should I see? What compound is in the pipette? Which is in the burette? What is the reaction that is taking place now?

After a question, experimental data is provided. It is filled into the results tables in the same way that a student would write the data if he or she were doing the experiment.

Now the student should use the provided data to perform any necessary calculations, draw graphs if necessary, and answer the questions. Sample calculations, graphs, and answers are provided at the end of the booklet. Students should attempt the calculations on their own before looking at the answers, however.

Notes on Units and Formulas

A. Volume

The units of volume commonly used in this manual are cm 3 and dm 3 . The conversion between cm^{3} and dm^{3} is $1 \mathrm{dm}^{3}=1000 \mathrm{dm}^{3}$. Note that a cm^{3} are the same as millilitres (ml) and dm^{3} are the same as litres (L). $1 \mathrm{~cm}^{3}=1 \mathrm{ml}$ and $1 \mathrm{dm}^{3}=1 \mathrm{~L}$.

B. Concentration

Concentration is a measure of amount per volume. The amount can be grams, kilograms, number of moles, or any other unit of amount. Volume can be $\mathrm{cm}^{3}, \mathrm{dm}^{3}$, or any other volume. The two types of concentration used commonly are $\mathrm{mol} / \mathrm{dm}^{3}$ and $\mathrm{g} / \mathrm{dm}^{3}$.
(i) $\mathrm{mol} / \mathrm{dm}^{3}$ is also called Molarity or molar concentration. The symbol for molarity is M . Molarity is used in the $\mathrm{M}_{\mathrm{A}} \mathrm{V}_{\mathrm{A}}$ formula.
(ii) $\mathrm{g} / \mathrm{dm}^{3}$ is called gram concentration.

To convert from molar concentration to gram concentration, you multiply the molar concentration by the molar mass of the molecule.

To convert from gram concentration to molar concentration, you divide the gram concentration by the molar mass of the molecule.

c. The Mole Concept

A mole (mol) is a unit of amount. 1 mol of something is equal to 6.022×10^{23} of that thing. For example, 1 mol of H_{2} molecules is equal to $6.022 \times 10^{23} \mathrm{H}_{2}$ molecules. 1 mol of goats is 6.022×10^{23} goats.
There are two important formulas for determining the number of moles present of a compound. The first:

$$
n=\frac{m(\text { in grams })}{\text { MolarMass, } \left.M_{r} \text { (in grams per mol }\right)}
$$

You see that when you cancel the units, you are left with moles.
The second formula:

$$
n=M V
$$

where $M=$ molarity (in $\mathrm{mol} / \mathrm{dm}^{3}$) and $V=$ volume (in dm^{3}). Notice that when you cancel the units, you are left with moles.

D. Stoichiometry

Stoichiometry is the study of the relationships between amounts (number of moles or masses) of reactants and products. It is fundamental to all of chemistry, and it is essential that you understand the stroichiometry and are able to apply it to numbers of moles and masses in chemical reactions. Quantitative reactions are reactions that continue until one of the reactants is finished. Reactions with a strong acid or strong base are quantitative, as are most of the reactions in redox titrations. If the reaction proceeds in only one direction (and is not reversible), it is a quantitative reaction. Usually the NECTA exam will state if a reaction is quantitative. If the question states that something "is in excess," this means that there is a very large amount of it, so much that it will not be finished in the reaction.

The mol ratio between two compounds is the ratio in which those two compounds react. For example, in the reaction:

$$
\mathrm{NH}_{3}+\mathrm{O}_{2} \cdot \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}
$$

One mol of NH_{3} reacts with one mol of O_{2} to form one mol of NO and one mol of $\mathrm{H}_{2} \mathrm{O}$. If 8.5 g of NH_{3} react with 32 of O_{2}, how many grams of NO will be formed? When comparing the relationships between two compounds in a reaction, you must look at the mole relation! The mass relation does not tell us very much. Converting to moles, we see that there are 0.5 moles of NH_{3} and 1 mole of O_{2}.

Which of the reactants will be finished first, or will both be finished at the end of the reaction? NH_{3} will be finished first, since there are only 0.5 mols of it present and NH_{3} and O_{2} react in a $1: 1$ mole ratio.

How many moles of NO will be formed? NH_{3} and NO have a $1: 1 \mathrm{~mol}$ ratio, so 0.5 mols of NH_{3} will produce 0.5 mols of NO . 0.5 moles of NO has a mass of 15 grams.

So you can see that in order to determine the relationship between reactants and products, we must first compare the number of moles! Once we have determined the mole relation, we can convert from number of moles to grams.

Another example: In the
reaction: $\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}$.
$\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}+2 \mathrm{I}^{-}$
1 mol of I_{2} reacts with 2 mol of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ to produce 1 mol of $\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$ and 2 mol of I^{-}. This gives us no information about the actual number of moles of these compounds, only about the ratio in which they react. It means that 1 mol of I_{2} requires 2 mol of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ to react completely. Or: 0.25 mol of I_{2} requires 0.5 mol of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ to react completely. The ratio must me 1:2. But the actual number of moles can be $0.25 \mathrm{~mol}_{2}$ and $0.5 \mathrm{~mol} \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}$, or $2 \mathrm{~mol} \mathrm{I}_{2}$ and $4 \mathrm{~mol} \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}$, or $10 \mathrm{~mol} \mathrm{I}_{2}$ and $20 \mathrm{~mol}_{2} \mathrm{O}_{3}{ }^{2-}$. To find the actual number of moles, you can use cross-multiplication. You could be asked: 0.0125 mol of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ requires how many moles of I_{2} to react completely? You know that the mole ratio between $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ and I_{2} is $2: 1$. Thus:

$$
\frac{0.0125 \mathrm{~mol} \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}}{2 \mathrm{~mol} \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}}=\frac{x \mathrm{~mol} \mathrm{I}_{2}}{1 \mathrm{~mol}_{2}}
$$

We would find that $x=0.00625 \mathrm{~mol}_{2}$ would be required to completely react with $0.0125 \mathrm{~mol} 2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}$. Note that the relationship between the two compounds is between number of moles, not mass. For example, it is true that 1 mol of I_{2} reacts with 2 mol of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$, but this does not mean that 1 gram of I_{2} reacts with 2 grams of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$. You must think of these relationships in terms of numbers of moles!

E. The Dilution Formula

The dilution formula allows you to determine the molarity of a solution after it has been diluted. The formula is:

$$
\mathrm{M} 1 \mathrm{~V} 1=\mathrm{M} 2 \mathrm{~V} 2
$$

Where M_{1} and V_{1} are the molarity and volume before a dilution, and M_{2} and V_{2} are the molarity and volume after a dilution.

Consider this example from the 2006 NECTA: "Hydrochloric acid solution made by diluting $750 \mathrm{~cm}^{3}$ of 0.25 M HCl to $937.5 \mathrm{~cm}^{3}$ with distilled water." What is the molarity of this solution after dilution?

The volume before dilution $\left(\mathrm{V}_{1}\right)$ was $730 \mathrm{~cm}^{3}$, and the molarity before dilution $\left(\mathrm{M}_{1}\right)$ was 0.25 M . The volume after dilution $\left(\mathrm{V}_{2}\right)$ was $937.5 \mathrm{~cm}^{3}$. To find the molarity after dilution, M_{2}, we simply substitute the known values into the dilution equation and solve for M_{2}. We find that $\mathrm{M}_{2}=0.2 \mathrm{M}$.

Whenever you are given both a molarity and volume before a change (M_{1} and V_{1}) and are asked to calculate a volume or molarity after a change (V_{2} or M_{2}), the dilution formula is a good way to find the answer.
$\mathbf{F} . \mathbf{M}_{\mathbf{A}} \mathbf{V}_{\mathbf{A}} \quad$ The complete form
of $M_{A} V_{A}$ is shown below:

$$
\frac{M_{A} V_{A}}{n_{A}}=\frac{M_{B} V_{B}}{n_{B}}
$$

M_{A} is the molarity of compound A, V_{A} is the volume of compound A, M_{B} is the molarity of compound B, and V_{B} is the volume of compound $B . n_{A}$ and n_{B} are the mole ratio between compounds A and B, found from the balanced chemical equation. This equation is extremely important in chemistry practicals. It is used in acid-base titrations, redox titrations, and is sometimes needed in kinetics and solvent extraction questions. You can use it to solve for any part of the formula: M_{A}, V_{B}, anything. If you can find values for five of the terms, you will be able to calculate the sixth.

Exercises:

1. In the reaction $\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \cdot 2 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}, 12.7 \mathrm{~g}$ of I_{2} would require how many grams of sodium thiosulphate for complete reaction?
2. You mix $250 \mathrm{~cm}^{3}$ of a 0.1 M HCl solution with $500 \mathrm{~cm}^{3}$ of a 0.08 M NaOH solution. Will HCl or NaOH be in excess? How many moles of the compound will remain? What will be the molarity of the solution?
3. CuSO_{4} reacts with KI to produce I_{2} in the following reaction:

$$
2 \mathrm{Cu}^{2+}+4 \mathrm{I}^{-} \cdot \mathrm{Cu}_{2} \mathrm{I}_{2}+\mathrm{I}_{2}
$$

15.9 g of CuSO_{4} react with 4.15 g of KI . Which reactant will finish first? What amount of I_{2} will be formed (in moles and grams)?
4. Consider the two reactions:

$$
\mathrm{IO}_{3}^{-}+5 \mathrm{I}^{-}+6 \mathrm{H}^{+} \cdot 3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{I}_{2}
$$

$$
\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \cdot \mathrm{S}_{4} \mathrm{O}_{6}^{2-}+2 \mathrm{I}^{-}
$$

21.4 g of potassium iodate $\left(\mathrm{KIO}_{3}\right)$ would react with an excess of iodide ions to produce what mass of I_{2} ? This I_{2} produced in the first reaction would require how many moles of sodium thiosulphate $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}\right)$ to be used up? Hint: use the mole ratio between $\mathrm{IO}_{3}{ }^{-}$and $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ to answer this last question.

Answers:

1. 15.8 grams
2. NaOH will be in excess. 0.015 moles of NaOH will remain after reaction with HCl , producing a solution with a molarity of 0.02 M NaOH
3. The KI will finish first. The reaction will produce 0.00625 moles if I_{2}, or 1.59 grams of
I_{2}.
4. 21.4 grams of potassium iodate is 0.1 moles of potassium iodate. This will form 0.3 moles of I_{2}.
0.1 moles of potassium iodate will produce enough iodine to react with how many moles of thiosulphate ions? We can find the mole ratio between iodate ions and thiosulphate ions and then use cross-multiplication.

How can we find the mole ratio between $\mathrm{IO}_{3}{ }^{-}$and $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$? They are in two different equations so they are difficult to compare? Well, we see that there is 1 mol of $\mathrm{IO}_{3}{ }^{-}$and 2 mol of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$, so the mole ratio must be 1:2. NO!!!! This is not correct!

We must add the two equations together in such a way that I_{2} cancels. I_{2} allows you to translate between these two equations. How can we do this? We see that in the first equation there are $3 \mathrm{I}_{2}$ on the product side, and in the second equation there is one I_{2} on the reactant side. We must multiply the second equation by 3 , and then add the two together.
$\mathrm{IO}_{3}^{-}+5 \mathrm{I}^{-}+6 \mathrm{H}^{+} \cdot 3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{I}_{2}$
$3 \mathrm{I}_{2}+6 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \cdot 3 \mathrm{~S}_{4} \mathrm{O}_{6}{ }^{2-}+6 \mathrm{I}^{-}$(the equation has been
multiplied by 3) Adding these two equations together, we get:

$$
\mathrm{IO}_{3}^{-}+5 \mathrm{I}^{-}+6 \mathrm{H}^{+}+3 \mathrm{I}_{2}+6 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \cdot 3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{I}_{2}+3
$$

$\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}+6 \mathrm{I}^{-}$Cancelling the compounds that appear on both sides:

$$
\mathrm{IO}_{3}^{-}+6 \mathrm{H}^{+}+6 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-} \cdot 3 \mathrm{H}_{2} \mathrm{O}+3
$$

$\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}+1 \mathrm{I}^{-}$We see that the correct mole ratio between $\mathrm{IO}_{3}{ }^{-}$and $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ is 1:6.

Using cross-multiplication, you would find that 0.1 moles of potassium iodate would produce enough iodine to react with 0.6 moles of sodium thiosulphate.

Question 1 - NECTA 1999, Chemistry 3A

Acid-Base Titration

You are provided with
A1: A mixture containing Sodium hydroxide, NaOH and Sodium Carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$
A2: 1M Hydrochloric Acid, HCl
A3: Phenolphthalein Indicator
A4: Methyl Orange

PROCEDURE

- Pipette $20 \mathrm{~cm}^{3}$ (or $25 \mathrm{~cm}^{3}$) of A1 into a clean conical flask and titrate with A2 using A3 until the colour changes from red to colourless. Record the first end point.
- Put A4 to the colourless mixture obtained in the previous procedure, and then continue titrating until the colour changes from yellow to just red. Record the second end point.

RESULTS:

The volume of the pipette used was \qquad cm^{3}

Burette Readings

Titration	Pilot	1	2	3
Second end point $\left(\mathrm{V}_{2}\right.$ $\left.\mathrm{cm}^{3}\right)$				
First end point $\left(\mathrm{V}_{1} \mathrm{~cm}^{3}\right)$				
Initial volume $\left(\mathrm{V}_{0} \mathrm{~cm}^{3}\right)$				
Volume used $\left(\mathrm{V}_{2}-\mathrm{V}_{0}\right)$				
Volume used $\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$				

NB: There was an error in the exam question. The fifth row on the exam said: "Volume used
($\mathbf{V}_{\mathbf{2}}-\mathrm{V}_{\mathrm{o}}$)." It should say "Volume used ($\mathrm{V}_{\mathbf{1}}-\mathrm{V}_{\mathrm{o}}$)

Summary:
\qquad cm3 of Solution A1 required \qquad cm3 of $A 2$ in the presence of $A 3$ for complete neutralization.
\qquad cm 3 of Solution A1 required \qquad cm 3 of A 2 in the presence of A4 for complete neutralization.
(a) Write the ionic equations for the reactions taking place in this experiment.
(b) Calculate:
(i) The volume of HCl required for complete neutralization of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(ii) The volume of HCl required for complete neutralization of NaOH
(iii) The molarity of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(iv) The mass of NaOH and that of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the mixture

Experimental Data

The volume of the pipette used was $\underline{25} \mathrm{~cm}^{3}$

Titration	Pilot	1	2	3
Second end point $\left(V_{2}\right.$ $\left.\mathrm{cm}^{3}\right)$	30.3	30.1	29.7	29.8
first end point $\left(\mathrm{V}_{1} \mathrm{~cm}^{3}\right)$	17.6	17.7	17.4	17.3
initial volume $\left(\mathrm{V}_{0} \mathrm{~cm}^{3}\right)$	0	0	0	0
volume used $\left(\mathrm{V}_{1}-\mathrm{V}_{0}\right)$				
Volume used $\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$				

NB: The error in the exam question has been fixed, so that the fifth row now says: "Volume used ($\mathrm{V}_{1}-\mathrm{V}_{0}$), which is what it should say.

Summary:
\qquad cm^{3} of Solution A1 required \qquad cm 3 of A 2 in the presence of A3 for complete neutralization.
\qquad cm^{3} of Solution A1 required \qquad cm3 of $A 2$ in the presence of A4 for complete neutralization.

Now you, the student, need to fill out the remainder of the table, the summary and answer the questions.

Question 2 -- NECTA 1995, Chemistry Paper 3

Acid-Base Titration

You are provided with the following solutions:
PP is a solution containing hydrochloric acid and acetic acid OQ is a 0.1 M sodium hydroxide solution

MO is Methyl Orange
Indicator POP is
Phenylpthalein Indicator
PROCEDURE:
(a) Pipette $20 \mathrm{~cm}^{3}$ of $25 \mathrm{~cm}^{3}$ of solution PP into a $250 \mathrm{~cm}^{3}$ titration flask.
(b) Add 2 or 3 drops of MO
(c) Titrate the solution against solution OQ until a colour change is observed
(d) Record the first titre value
(e) Add 2 or 3 drops of POP
(f) Continue to titrate until a second colour change is observed
(g) Record the second titre value
(h) Repeat your titrations (steps (a) - (g) four or five times and record your results as shown below.

RESULTS:

The volume of the pipette used was
..............cm ${ }^{3}$ The volume of the burette used
was
..cm ${ }^{3}$ BURETTE READINGS:

Titration number	PILOT	1	2	3
1. Initial Reading				
2. Final Reading using MO				
3. Final Reading using POP				

4. First titre value (2-1) using MO				
5. Second titre value $(3-2)$ using POP				

SUMMARY:

\qquad .. cm^{3} of solution PP required \qquad .. cm^{3} of solution OQ when MO was used and \qquad cm^{3} of solution OQ when POP was used.
(a) The colour change for the titration using MO was from \qquad to and for the titration when POP was used was from \qquad to \qquad
(b) (i) MO is a good indicator for titration of strong base against \qquad acid
(ii) POP is a good indicator for titration of strong base against
\qquad
(c) (I) The first titre value signifies the titration of \qquad against sodium hydroxide
(ii) The second titre value signifies the titration of against sodium hydroxide
(d) Give the balanced chemical equations for the titration of sodium hydroxide against
(i) acetic acid
(ii) hydrochloric acid
(e) Calculate the concentration of the acid solution PP in $\mathrm{mol} \mathrm{dm}^{-3}$ when POP was added and when MO was added.
(f) Calculate the amount of hydrochloric acid in $1 \mathrm{dm}^{3}$ of solution PP in grams (g) Calculate the amount of acetic acid in 1 dm 3 of solution PP in grams.

Experimental Data

The volume of the pipette used was $20 \mathrm{~cm}^{3}$
The volume of the burette used was $50 \mathrm{~cm}^{3}$

BURETTE READINGS:

Titration number	PILOT	1	2	3
1. Initial Reading	0.0	0.0	0.0	0.0
2. Final Reading using MO	10.3	10.1	9.8	9.8

3. Final Reading using POP	26.4	26.2	25.7	25.9
4. First titre value (2- 1) using MO				
5. Second titre value $(3-2)$ using POP				

SUMMARY:
\qquad . cm^{3} of solution PP required \qquad cm^{3} of solution OQ when MO was used and \qquad cm^{3} of solution OQ when POP was used.

The information provided is enough to complete the table, fill in the summary, and answer the questions.

Question 3 -- NECTA 2006, Chemistry Paper 3A

Acid-Base Titration

You are provided with:

AA1: Solution mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \times \mathrm{H}_{2} \mathrm{O}$ and NaHCO_{3} made by dissolving 6.4125 of hydrated sodium carbonate contaminated with 1.05 g of pure sodium hydrogen carbonate in distilled water and then making up the volume of the solution to $250 \mathrm{~cm}^{3}$.

AA2: Hydrochloric acid solution made by diluting $750 \mathrm{~cm}^{3}$ of 0.25 M HCl to $937.5 \mathrm{~cm}^{3}$ with distilled water.

AA3: Methyl orange
indicator Theory:

When a mixture of sodium carbonate and sodium bicarbonate solution is titrated with dilute hydrochloric acid in presence of methyl orange indicator, they react quantitatively as shown in equations I and II below:
$\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \cdot 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \ldots \mathrm{I}$
$\mathrm{NaHCO}_{3}+\mathrm{HCl} \cdot \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \ldots \ldots$. II

Procedure:

(i) Pipette 20 or $25 \mathrm{~cm}^{3}$ of Solution AA1 into a titration flask.
(ii) Titrate the pipetted portion of AA1 against AA2 from a burette using two to three drops of methyl orange AA2 as indicator. Note the volume of AA2 used.
(iii) Repeat procedures (i) and (ii) above to obtain three more readings and tabulate your results as shown below.
(a) RESULTS:

Burette Readings:

Titration number	Pilot	1	2	3
Final reading $\left(\mathrm{cm}^{3}\right)$				
Initial Reading $\left(\mathrm{cm}^{3}\right)$				
Titre Volume $\left(\mathrm{cm}^{3}\right)$				

(b) \qquad cm^{3} of AA1 required \qquad cm^{3} of AA2 for complete reaction
(c) Calculate the molarity of AA2
(d) Calculate the molarity of AA1 with respect to:
(i) NaHCO_{3} (ii) $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$

Experimental Results

Burette Readings:

Titration number	Pilot	1	2	3
Final reading $\left(\mathrm{cm}^{3}\right)$	28.9	28.8	28.8	28.6
Initial Reading $\left(\mathrm{cm}^{3}\right)$	0.00	0.00	0.00	0.00

Titre Volume $\left(\mathrm{cm}^{3}\right)$				

(b) $25 \mathrm{~cm}^{3}$ of AA 1 required \qquad cm^{3} of AA2 for complete reaction

This information is enough for you to fill in the rest of the results table and answer the questions.

Question 4 -- NECTA 1994, Chemistry Paper 3C

Acid-Base Titration

You are provided with:
TT: a solution of an ammonium salt whose general formula is $\left(\mathrm{NH}_{4}\right) \mathrm{x}$ prepared by dissolving
6.60 g of the salt in $1000 \mathrm{~cm}^{3}$ of water.

SS: 0.15 M sodium hydroxide
solution ZZ: 0.025 M sulphuric
acid.

Procedure:
Pipette $20 \mathrm{~cm}^{3}$ (or $25 \mathrm{~cm}^{3}$) of solution TT into a beaker and then pipette an equal volume of solution SS into the same beaker. Boil the mixture gently until the steam being evolved is neutral to moist red litmus paper. Cool the mixture in a water bath, then titrate the excess SS in the mixture against solution $Z Z$ using phenolpthalein (POP) as your indicator.

Repeat this procedure to obtain two or three more readings and record your results as shown below.

RESULTS:

The volume of the pipette used was
\qquad cm^{3} The volume of the burette used
was \qquad cm^{3} BURETTE READINGS:

Titration Number	Pilot	1	2	3
Final reading $\left(\mathrm{cm}^{3}\right)$				
Initial reading $\left(\mathrm{cm}^{3}\right)$				
Titre $\left(\mathrm{cm}^{3}\right)$				

SUMMARY:
The solution mixture required \qquad cm^{3} of solution ZZ for complete neutralization of excess SS.

Calculate:

(a) the volume of excess SS in the mixture
(b) The volume of SS used to liberate ammonia from a single portion of solution TT
(c) The mass of ammonia expelled from the mixture
(d) The total mass of nitrogen in the expelled ammonia
(e) The percentage by weight of ammonia in the salt

Experimental Results

The volume of the pipette used was $25 \mathrm{~cm}^{3}$
The volume of the burette used was $50 \mathrm{~cm}^{3}$

Titration Number	Pilot	1	2	3
Final reading $\left(\mathrm{cm}^{3}\right)$	33.8	33.6	33.7	33.7
Initial reading $\left(\mathrm{cm}^{3}\right)$	0.0	0.0	0.0	0.0
Titre $\left(\mathrm{cm}^{3}\right)$				

The solution mixture required \qquad cm^{3} of solution ZZ for complete neutralization of excess SS.

The information provided above is enough for you to fill in the remainder of the data table, complete the summary, and answer the questions.

Question 5 - NECTA 1993, Chemistry Paper 3

Redox Titration

You are provided with:
KK: a solution of hydrogen peroxide obtained by reacting 7.2 g of impure barium peroxide with dilute sulphuric acid and making the solution to $1 \mathrm{dm}^{3}$, using distilled water, after filtering. GG: A solution of potassium permanganate containing 3.0 g of KMnO_{4} per $\mathrm{dm}^{3} \mathrm{HH}$: A 2 M sulphuric acid solution.

A quantitative reaction occurs between barium peroxide and dilute sulphuric acid according to the equation

$$
\mathrm{BaO} 2(\mathrm{~s})+\mathrm{H} 2 \mathrm{SO} 4(\mathrm{aq}) \cdot \mathrm{BaSO} 4(\mathrm{~s})+\mathrm{H} 2 \mathrm{O} 2(\mathrm{aq})
$$

PROCEDURE:

Pipette $20 \mathrm{~cm}^{3}$ (or $25 \mathrm{~cm}^{3}$) of solution KK into a conical flask, add to it about $25 \mathrm{~cm}^{3}$ of 2 M HH and titrate this mixture with solution GG until a permanent pink colour is observed.
Repeat this procedure for at least three times. Record your titration results in tabular form as shown below.

RESULTS:

The volume of the pipette used was cm^{3}
The volume of the burette used was cm^{3}

BURETTE READING:

Titration Number	Pilot	1	2	3
Final reading $\left(\mathrm{cm}^{3}\right)$				
Initial reading $\left(\mathrm{cm}^{3}\right)$				
Titre $\left(\mathrm{cm}^{3}\right)$				

SUMMARY:
\qquad cm^{3} of solution KK needed \qquad cm^{3} of solution GG for complete reaction.
(a) Write an ionic equation for the reaction between hydrogen peroxide and potassium permanganate in excess of dilute sulphuric acid.
(b) Calculate the concentration of hydrogen peroxide in
(i) $\mathrm{mole} / \mathrm{dm}^{3}$
(ii) $\mathrm{g} / \mathrm{dm}^{3}$
(c) What was the percentage purity of barium peroxide used?

Experimental Results

The volume of the pipette used was $25 \mathrm{~cm}^{3}$
The volume of the burette used was $50 \mathrm{~cm}^{3}$

Titration Number	Pilot	1	2	3
Final reading $\left(\mathrm{cm}^{3}\right)$	16.2	31.8	15.9	31.7
Initial reading $\left(\mathrm{cm}^{3}\right)$	0.0	16.2	0.0	15.9
Titre $\left(\mathrm{cm}^{3}\right)$	16.2	15.6	15.9	15.8

SUMMARY:
\qquad cm^{3} of solution KK needed \qquad cm^{3} of solution GG for complete reaction

The information provided is enough for you to fill out the remaining boxes in the results table. After filling these boxes, you can complete the summary and answer the questions.

Question 6 - NECTA 1997, Chemistry Paper 3A

Redox Titration

You are provided with:
FA1: A solution made by dissolving 3.25 g of impure Potassium dichromate $\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$ in $500 \mathrm{~cm}^{3}$ of distilled water.
FA2: A solution made by dissolving 12.40 g of sodium thiosulphate pentahydrate $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}\right)$ in $500 \mathrm{~cm}^{3}$ of distilled water.
FA3: 10\% Potassium Iodide Solution

PROCEDURE:

1. Pipette $20.0 \mathrm{~cm}^{3}$ (or $25.0 \mathrm{~cm}^{3}$) of FA1 into a clean conical flask. Add to it 20 cm^{3} of bench dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $20 \mathrm{~cm}^{3}$ of Potassium Iodide solution.

The Potassium Iodide is in considerable excess, and Iodine is liberated according to the equation

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 \mathrm{I}^{-} 14 \mathrm{H}^{+} \cdot 2 \mathrm{Cr}^{3+}+3 \mathrm{I}_{2}+7 \mathrm{H}_{2} \mathrm{O}
$$

2. Titrate the liberated Iodine with FA2, using starch as an indicator.

Quantitative reaction takes place between Iodine and the thiosulphate ion.

$$
\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \cdot \mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}+2 \mathrm{I}^{-}
$$

The end point is when the blue colour of the starch-Iodine complex is just replaced by the GREEN colour of Cr^{3+} ions.

RESULTS

The volume of the pipette used was \qquad cm^{3}

Burette Readings:

Titration	Pilot	1	2	3
Final volume $\left(\mathrm{m}^{3}\right)$				
Initial volume $\left(\mathrm{cm}^{3}\right)$				
Volume used $\left(\mathrm{cm}^{3}\right)$				

Note: There is an error in the question. The units for final volume should be cm^{3}, not m^{3}.

Summary:
\qquad . cm^{3} of FA1 liberated sufficient Iodine to oxidize \qquad . cm^{3} of FA2.
Calculate:
(a) The molarity of the potassium dichromate, $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
(b) The concentration of the potassium dichromate in $\mathrm{g} / \mathrm{dm}^{3}$
(c) The percentage purity of the potassium dichromate

Experimental Results

The volume of the pipette used was $25 \mathrm{~cm}^{3}$

Titration	Pilot	1	2	3
Final volume $\left(\mathrm{cm}^{3}\right)$	19.4	19.1	19.4	19.2
Initial volume $\left(\mathrm{cm}^{3}\right)$	0.0	0.0	0.0	0.0
Volume used $\left(\mathrm{cm}^{3}\right)$				

Note: the table has been corrected so that the units for final volume are $\mathbf{c m}^{3}$, not \mathbf{m}^{3}.

Summary:
. cm^{3} of FA1 liberated sufficient Iodine to oxidize \qquad . cm^{3} of FA2

The information provided in this table is enough for you to fill out the summary and then answer the questions.

Question 7 - NECTA 2003, Chemistry 3A

Redox Titration

You are provided with:

A1: a solution of copper(II) sulphate $\left(\mathrm{CuSO}_{4}\right)$, obtained by reacting 9 g of impure copper (II) oxide (CuO) with dilute sulphuric acid and making the solution to $1 \mathrm{dm}^{3}$ using distilled water after filtering.

A2: a solution made by dissolving 12.40 g of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ in $500 \mathrm{~cm}^{3}$ of distilled water.

A3: A solution of $10 \% \mathrm{KI}$

A4: A starch solution.

Theory:

A quantitative reaction occurs between copper (II) oxide and sulphuric acid according to the equation given below:

$$
\begin{equation*}
\mathrm{CuO}+\mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathrm{CuSO}_{4}+\mathrm{H}_{2} \mathrm{O} \tag{1}
\end{equation*}
$$

The copper (II) sulphate obtained reacts quantitatively with potassium iodide to liberate iodine as follows:

$$
2 \mathrm{Cu} 2+(\mathrm{aq})+4 \mathrm{I}-(\mathrm{aq}) \cdot \mathrm{Cu} 2 \mathrm{I} 2(\mathrm{~s})+\mathrm{I} 2(\mathrm{~s}) \ldots . .(2)
$$

The liberated iodine can be titrated against sodium thiosulphate and the reaction taking place during the titration can be represented as follows:

$$
2 \mathrm{~S} 2 \mathrm{O} 32-(\mathrm{aq})+\mathrm{I} 2(\mathrm{~s}) \cdot \mathrm{S} 4 \mathrm{O} 62-(\mathrm{aq})+2 \mathrm{I}-(\mathrm{aq}) \ldots \ldots . . \text { (3) }
$$

Procedure:

(a) Pipette $20.00 \mathrm{~cm}^{3}$ (or $25.00 \mathrm{~cm}^{3}$) of solution A1 into a conical flask.
(b) Add about $20 \mathrm{~cm}^{3}$ of A 3 solution from a measuring cylinder and shake the mixture.
(c) Titrate the mixture with solution A2 from the burette until the solution changes to light brownish in colour.
(d) Add about $2 \mathrm{~cm}^{3}$ of solution A4.
(e) Continue with the titration until the pale blue colour just disappears and a milky colour appears. Record your results in tabular form as shown below: (Table 1)

Results:

The volume of the pipette used was \qquad
The volume of the burette used was \qquad

Table 1: Burette Readings

Titration number	Pilot	1	2	3
Final reading $\left(\mathrm{cm}^{3}\right)$				
Initial reading $\left(\mathrm{cm}^{3}\right)$				
Titre volume used $\left(\mathrm{cm}^{3}\right)$				

Summary: \qquad cm^{3} of solution A1 liberated iodine which required
\qquad cm^{3} of A 2 for complete reaction.

Questions:

(a) Calculate the concentration of A2 in moles per litre
(b) Calculate the molarity of A1
(c) Calculate the concentration of A 1 in $\mathrm{g} / \mathrm{dm}^{3}$
(d) Find the percentage purity of copper (II) oxide (CuO)

Experimental Results

The volume of the pipette used was $25 \mathrm{~cm}^{3}$ The volume of the burette used was $50 \mathrm{~cm}^{3}$

Titration number	Pilot	1	2	3
Final reading $\left(\mathrm{cm}^{3}\right)$	23.0	44.4	21.3	42.4
Initial reading $\left(\mathrm{cm}^{3}\right)$	0.0	23.0	0.0	21.3
Titre volume used $\left(\mathrm{cm}^{3}\right)$				

This information is enough for you to fill out the remaining cells in the table and to answer the questions.

Question 8 --NECTA 2005, Chemistry 3A

Redox Titration

You are provided with the following solutions:

D1: is a solution containing 13 g of an impure iodine in $1 \mathrm{dm}^{3}$ of aqueous solution
D2: is a solution containing 0.025 moles of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ in $250 \mathrm{~cm}^{3}$ of aqueous solution - Starch Indicator

Theory:

Iodine reacts with sodium thiosulphate quantitatively as indicated in the reaction below:

$$
\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \cdot \mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}+2 \mathrm{I}^{-}
$$

Procedure:

(a) Pipette $25 \mathrm{~cm}^{3}$ (or $20 \mathrm{~cm}^{3}$) of solution D1 into a conical flask.
(b) Put D2 into the burette and note the initial reading
(c) Titrate solution D1 against solution D2 from the burette until the solution is pale yellow. Add starch indicator and continue to titrate until the blur colour is discharged.

Experimental Results

(d) Note the volume of D2 used.
(e) Repeat procedures (a) to (d) to get three more readings (f) Record your results in the table as shown below.

Results:

The volume of the pipette used was \qquad
cm^{3}. Burette readings:

Titration Number	Pilot	1	2	3
Final reading $\left(\mathrm{cm}^{3}\right)$				
Initial Reading $\left(\mathrm{cm}^{3}\right)$				
Volume used $\left(\mathrm{cm}^{3}\right)$				

Summary: \qquad cm^{3} of solution D_{1} required \qquad cm^{3} of solution D_{2} for complete reaction.

Questions:

(a): Calculate the concentration of D2 in moles per dm^{3}.
(b) Calculate:
(i) The molarity of pure iodine
(ii) The concentration of pure iodine in $\mathrm{g} / \mathrm{dm}^{3}$
(iii) The percentage purity of iodine
(c) Iodine is only slightly soluble in water. Which chemical substance do you think was added into water to increase the solubility of iodine? Explain

Results:

The volume of the pipette used was 25
cm^{3}. Burette readings:

Titration Number	Pilot	1	2	3
Final reading $\left(\mathrm{cm}^{3}\right)$	21.1	20.7	41.2	20.4
Initial Reading $\left(\mathrm{cm}^{3}\right)$	0.00	0.00	20.7	0.00
Volume used $\left(\mathrm{cm}^{3}\right)$				

Summary:

\qquad cm^{3} of solution D1 required \qquad cm^{3} of solution D2 for complete reaction.

Experimental Results

Question 9 -- Necta 1990, Chemistry Paper 3

Redox Titration

You are provided with the following solutions:
EF is a $250 \mathrm{~cm}^{3}$ solution containing 1 g of an impure sample of Manganese dioxide $\left(\mathrm{MnO}_{2}\right)$ and 2.2 g of oxalic acid crystals $\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$.
GH is a standard solution of 0.02 M potassium permanganate, and dilute sulphuric acid.

Manganese dioxide and oxalic acid react quantitatively as follows:

$$
\mathrm{MnO}_{2}+2 \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4} \cdot \mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2} \uparrow
$$

And the excess oxalic acid reacts quantitatively with potassium permanganate as follows:

$$
2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}+16 \mathrm{H}^{+} \cdot 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{CO}_{2} \uparrow
$$

(Note: The first equation is not balanced. If you encounter a mistake like this on the NECTA exam, make a note but then continue to use the given equation. You will note lose points by using the equation that NECTA provides. If balancing the equation is part of the question, however, be sure to balance the equation.)

PROCEDURE:

Pipette $20 \mathrm{~cm}^{3}$ (or $25 \mathrm{~cm}^{3}$) of EF into a conical flask, add about $20 \mathrm{~cm}^{3}$ of dilute sulphuric acid and heat the contents of the flask to about $80^{\circ} \mathrm{C}$. Titrate the hot EF with GH until the purple colour disappears. (Note: there is a mistake in the question here. It should read: Titrate the hot EF with GH until the purple colour no longer disappears). Repeat this procedure two to three times and record your titration results as indicated in the table below.

RESULTS:

The volume of the pipette used was \qquad cm^{3}
The volume of the burette used was cm^{3}

BURETTE READINGS:

Experimental Results

Titration Number	Pilot	1	2	3
Final Reading				
Initial Reading				
Titre (Volume used)				

SUMMARY:

For complete reaction, \qquad cm^{3} of EF required \qquad cm^{3} of GH .

Calculate:

(a) the molarity of the oxalic acid
(b) the concentration of the oxalic acid in $\mathrm{g} / \mathrm{dm}^{3}$
(c) the percentage purity of the Manganese dioxide in the sample.

The volume of the pipette used was $20 \mathrm{~cm}^{3}$
The volume of the burette used was $50 \mathrm{~cm}^{3}$

Titration Number	Pilot	1	2	3
Final Reading	11.4	11.3	22.7	33.7
Initial Reading	0.0	0.0	11.3	22.7
Titre (Volume used)				

For complete reaction, \qquad cm^{3} of EF required \qquad cm^{3} of GH

These results are enough for you to fill in the remainder of the table, complete the summary, and answer the questions.

Question 10 - NECTA 1990, Paper 3

Experimental Results

You are provided with the following:
HI is a solution of 0.05 M of sodium thiosulphate
JK is a solution of 0.1 M Nitric Acid
A stopwatch or stopclock
A thermometer $\left(0^{\circ} \mathrm{C}-100^{\circ} \mathrm{C}\right)$

A white precipitate of amorphous sulphur can be obtained by the action of a dilute acid on sodium thiosulphate $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)$ according to the equation

$$
\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}+2 \mathrm{H}_{2} \mathrm{O}^{+} \cdot 3 \mathrm{H}_{2} \mathrm{O}+\mathrm{S} \downarrow+\mathrm{SO}_{2} \uparrow
$$

(Note: There is an error in the question. On the reactant side, $\mathrm{H}_{2} \mathrm{O}^{+}$ should be $\mathbf{H}_{3} \mathbf{O}^{+}$) The precipitated sulphur causes the solution to become opaque. From this phenomenon, you can assess the rate of sulphur precipitation by measuring the time taken for the solution to become totally opaqued by the sulphur

PROCEDURE:

(a) Using a blue/black marker pen, draw a clear letter M on a white piece of paper and place a small beaker/flask provided on top of the letter M such that the letter M is visible through the solution (b) Pour about $200 \mathrm{~cm}^{3}$ of tap water into a $250 \mathrm{~cm}^{3}$ or $300 \mathrm{~cm}^{3}$ beaker. (Use this as your water bath) (c) Measure out exactly $10.0 \mathrm{~cm}^{3}$ of HI and $10.0 \mathrm{~cm}^{3}$ of JK into separate boiling test tubes.
(d) Put the two boiling test tubes containing HI and JK into the water bath (in (b)) above and warm the contents to about $50^{\circ} \mathrm{C}$.
(e) Immediately pour the hot solutions HI and JK (in (d)) above in the small beaker/flask in (a) above and simultaneously start the stopwatch/stopclock and record the temperature of the reaction mixture.
(f) Using a glass rod, stir the reaction mixture (in (e)) above and record the time taken, in seconds, for the letter M to disappear completely.
(g) Repeat the whole procedure ((c) to (f)) using temperatures $60^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ and record your results as shown below.

RESULTS:

Temperature $\mathrm{T} /{ }^{\circ} \mathrm{C}$	Temperature T / K	Time of Reaction $(\mathrm{t} / \mathrm{sec})$	$1 / \mathrm{T}\left(\mathrm{K}^{-1}\right)$	$\log _{10} 1 / \mathrm{t}$ $/ \mathrm{sec}^{-1}$
$50^{\circ} \mathrm{C}$				
$60^{\circ} \mathrm{C}$				
$70^{\circ} \mathrm{C}$				

Experimental Results

$80^{\circ} \mathrm{C}$				

(i) Plot a graph of $\log _{10} 1 / \mathrm{t} / \mathrm{sec}^{-1}$ against $1 / \mathrm{T} \mathrm{K}^{-1}$
(ii) Determine the slope of the graph obtained in (i) above.
(iii) Using the equation $\mathrm{k}=\mathrm{Ae} \mathrm{e}^{-\mathrm{E} / \mathrm{RT}}$ which gives the relationship describing the dependence of the rate constant on temperature determine the value of A and E of the given equation using data from (ii) above.

Experimental Results

Temperature $\mathrm{T} /{ }^{\circ} \mathrm{C}$	Temperature T / K	Time of Reaction $(\mathrm{t} / \mathrm{sec})$	$1 / \mathrm{T}\left(\mathrm{K}^{-1}\right)$	Log $_{10} 1 / \mathrm{t}$ $/ \mathrm{sec}-1$
$50^{\circ} \mathrm{C}$		346.12		
$60^{\circ} \mathrm{C}$		184.72		
$70^{\circ} \mathrm{C}$		92.23		
$80^{\circ} \mathrm{C}$		46.38		

The information provided is enough to fill in the remainder of the table, plot the graph, and answer the questions.

Question 11 - NECTA 2000, Chemistry 3A

Reaction Rate

You are provided with the following

AA: 0.02 M KMnO 4
$\mathrm{AB}: 0.05 \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ made up in $0.5 \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{SO}_{4}$
AC: Thermometer
AD: Stop Watch

THEORY:

The reaction between Potassium permanganate and oxalic acid proceeds at a measurable rate as

$$
2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \cdot 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{CO}_{2}
$$

PROCEDURE

- Prepare a water bath by putting $200 \mathrm{~cm}^{3}$ of distilled water in a $250 \mathrm{~cm}^{3}$ conical flask and leave the water boiling
- Put $A A$ and $A B$ in different burettes
- Measure out 10 cm 3 of each and put in a different boiling test-tube. Immerse the boiling tubes in the water bath. Boil the water bath up to $50^{\circ} \mathrm{C}$. At this temperature pour $A B$ into $A A$ and immediately start AD. Note the time taken for the disappearance of the purple colour. Repeat the experiment for other temperatures $60,70,80$, and $90^{\circ} \mathrm{C}$.

Table of results

Temperature $\mathrm{T},{ }^{\circ} \mathrm{C}$	Time, $\mathrm{t}(\mathrm{sec})$	$\mathrm{T}(\mathrm{K})$	$1 / \mathrm{T}\left(\mathrm{K}^{-1}\right)$	Log t (sec)
50				
60				
70				
80				
90				

Questions

(a) Write the ionic half-reaction equation for both (i) MnO_{4}^{-}and
(ii) $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ ions. (b) Plot the graph of $\log \mathrm{t}$ (sec) against $1 / \mathrm{T}\left(\mathrm{K}^{-1}\right)$
(c) Calculate the activation energy given that the slope of the graph is equal to $0.052 \mathrm{Ea} \mathrm{mol} \mathrm{KJ}^{-1}$ (Note: The units provided are incorrect. It should say: 0.052 Ea mol J $^{-1}$).

Experimental Data

Temperature $\mathrm{T},{ }^{\circ} \mathrm{C}$	Time, $\mathrm{t}(\mathrm{sec})$	$\mathrm{T}(\mathrm{K})$	$1 / \mathrm{T}\left(\mathrm{K}^{-1}\right)$	Log t (sec)
50	37.1			
60	14.2			
70	6			
80	3			
90	1.8			

This data is enough to fill the rest of the table. Fill in the final three columns, plot the graph, and answer the questions.

Question 12 - NECTA 1992, Chemistry 3

Reaction Rate

You are provided with:
KK: 0.02M Iodine dissolved in 0.2M KI
LL: 0.25 M Acetone solution
MM: 0.50M Aqueous sodium hydrogen carbonate
NN: 001M Aqueous sodium thiosulphate
OO: 1.00M sulphuric acid
DD: Starch Solution

The rate of acid catalyzed iodination of acetone in aqueous solution depends on the concentration of both acetone and iodine.

$$
\begin{equation*}
\mathrm{I}_{2}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{CCH}_{3(\mathrm{aq})} \cdot \quad \mathrm{ICH}_{2} \mathrm{CCH}_{3}+\mathrm{HI}_{(\mathrm{aq})} \tag{1}
\end{equation*}
$$

The dependence of this reaction on the concentration of iodine alone can be studied if a large excess of acetone is used such that its concentration (acetone's) is virtually unchanged throughout the reaction. But this reaction proceeds at a very slow rate whereas the reaction between sodium thiosulphate and iodine proceeds at a very fast rate.

$$
\begin{equation*}
2 \text { S2O32- + } 2 \text { I2(aq) • 2I-(aq) + S4O62- } \tag{2}
\end{equation*}
$$

The study of the iodination of acetone may be carried out by titrating portions of the reaction mixture (reaction 1) with sodium thiosulphate using strach indicator.

PROCEDURE:

(i) Use a measuring cylinder to put $80 \mathrm{~cm}^{3}$ of $K K$ into the first conical flask, $40 \mathrm{~cm}^{3}$ of LL and $40 \mathrm{~cm}^{3}$ of OO into the second conical flask and 15 cm^{3} of MM into the third conical flask. Put NN into the burette. Then pout the contents of the first conical flask into a second conical flask. Immediately start the stopwatch/clock and shake well the reaction mixture for at least one minute.
(ii) After about five minutes, pipette 10 cm 3 of the reaction mixture into the third conical flask. Note the time when you do this and shake well the flask. When effervescenvce has ceased, titrate the residual iodine in the flask with solution NN using DD solution as indicator.
NB: The starch indicator is only used towards the end point of the titration.
(iii) Repeat procedure (ii) at intervals of five minutes and tabulate your results as shown below:

Time (Minutes) T	Vol. Of NN used $\left(\mathrm{cm}^{3}\right)$	Conc ${ }^{\mathrm{n}}$ of lodine (M)	$1 /$ Conc $^{\mathrm{n}}$ of Iodine (M)
5			
10			
15			
20			
25			
30			
35			

(Note: The units for the final column should be M^{-1}, not M)
(a) Use your results to fill the three blank columns in the table
(b) On the same page of graph paper provided, plot
(i) $\quad \mathrm{T}$ against M
(ii) $\quad \mathrm{T}$ against M^{-1}
(c) Determine the rate of reaction (1) with respect to iodine. Give reason(s) (d) What is the purpose of MM in this experiment?

Experimental Data

The data is shown below in Table

Time (Minutes) T	Vol. Of NN used	Conc ${ }^{n}$ of Iodine (M)	1/Concn of Iodine (1/M)
5	12.2		

10	11.1		
15	10.3		
20	9		
25	7.9		
30	6.8		

The data provided is enough to fill the last two columns. Use this data to plot the graphs and answer the questions.

Question 13 - NECTA 1999, Chemistry 3A

Reaction Rate

You are provided with:
G1: 0.2 M Sodium thiosulphate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
G2: 0.1M Hydrocholoric acid, HCl
G3: Distilled Water
G4: stop watch
G5: Piece of white paper marked " + "

PROCEDURE

- On G5 put a reaction concical flask on top of the mark + in such a way the mark is clearly seen through the bottom of the conical flask.
- Using 10 ml measuring cylinder (or burette) measure out 2 mls of G1 and 8 mls of G3 and then put them in a conical flask on top of the mark G5
- Using another 10 mls measuring cylinder (or burette) measure out 10 mls of G2 and at the convenient time pour G2 in the conical flask containing G1 and G3 and immediately start a stop watch. Record the time taken for the mark to disappear due to formation of the precipitate.
- Repeat the experiment for different sets of concentrations as shown in a table below.

Experiment	Sodium	Water $\left(\mathrm{cm}^{3}\right)$	0.1 M HCl $\left(\mathrm{cm}^{3}\right)$	Time (sec)

	Thiosulphate $\left(\mathrm{cm}^{3}\right)$			
A	2	8	10	
B	4	6	10	
C	6	4	10	
D	8	2	10	
E	10	0	10	

RESULTS:

Sodium Thiosulphate $\left(\mathrm{cm}^{3}\right)$	Time (t) Sec	$1 /$ Time $(1 / \mathrm{t})=$ Rate Sec^{-1}
2		
4		
6		
8		
10		

From the experiment
(a) Given that the volumes of the individual solutions are directly proportional to their concentration.
(i) Plot a graph of $1 / \mathrm{t}$ (vertical axis) against the volumes of sodium thiosulphate (note: origin is a point in the graph)
(ii) From the graph determine the order of reaction with respect to sodium thiosulphate
(b) What caused the precipitate to occur in the reaction?
(c) Write the ionic equation between the acid and sodium thiosulphate

Experimental Data

Experiment	Sodium Thiosulphate $\left(\mathrm{cm}^{3}\right)$	Water $\left(\mathrm{cm}^{3}\right)$	0.1 M HCl $\left(\mathrm{cm}^{3}\right)$	Time (sec)
A	2	8	10	699
B	4	6	10	206
C	6	4	10	124

D	8	2	10	86
E	10	0	10	57

Sodium Thiosulphate $\left(\mathrm{cm}^{3}\right)$	Time (t) Sec	$1 /$ Time $(1 / \mathrm{t})=$ Rate Sec^{-1}
2		
4		
6		
8		
10		

Use the data provided in the first table to fill in the second table. Then plot the graph and answer the questions.

Question 14 -- NECTA 1994, Chemistry Paper 3A

Reaction Rate

You are provided with the following:

> AA: Distilled water

BB: Potassium Iodide Solution
CC: 2M Sulphuric acid
DD: Starch Solution
EE: 0.025 M sodium thiosulphate solution
FF: 0.025 M Hydrogen peroxide
You are required to determine the order, n, with respect to hydrogen peroxide, of the reaction

$$
\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{I}^{-}+2 \mathrm{H}^{+} \cdot 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}
$$

whose general rate equation can be expressed as

$$
\text { rate }=\mathrm{k}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]^{\mathrm{n}}\left[\mathrm{I}^{-}\right]^{\mathrm{p}}\left[\mathrm{H}^{+}\right]^{\mathrm{q}}
$$

NB: If the iodine and hydrogen ions are present in excess, the order of the reaction, n, with respect to hydrogen peroxide can be determined.
The cause of the reaction can be followed by noting the time taken by the reaction to produce an amount of iodine just enough to react with a known volume of sodium thiosulphate of specified concentration.

The reaction between iodine and sodium thiosulphate can be represented by the following equation:

$$
\text { I2 + } 2 \text { S2O32- • 2I- + }
$$

S4O62- Proceed as follows:
Using a measuring cylinder, pour 70 cm 3 of AA into a 250 cm 3 conical flask and then add to it the following:
$10 \mathrm{~cm}^{3}$ of BB measured by using a pipette
$5 \mathrm{~cm}^{3}$ of CC measured by using a measuring cylinder
$1 \mathrm{~cm}^{3}$ of DD measured from a burette
$2.5 \mathrm{~cm}^{3}$ of EE measured from a burette
Shake the resulting mixture thoroughly and then pipette into it $10 \mathrm{~cm}^{3}$ of FF. Stop the stopwatch/clock when you are about half-way through the addition of FF. Shake the mixture well to ensure complete mixing of the contents.
Record the time when the dark-blue starch-iodine colour appears. Without stopping the stopwatch/clock, add a further $2.5 \mathrm{~cm}^{3}$ portion of EE from the burette, shake well and record the time when the dark-blue starch-iodine colour reappears.

Repeat this procedure by adding a further $2.5 \mathrm{~cm}^{3}$ portions of EE for a total of six additions Record your results in a tabular form as shown below:
\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { Total volume } \\
\text { of EE added } \\
\left(\mathrm{cm}^{3}\right)\end{array} & \begin{array}{l}\text { Time, } \mathrm{t} \text {, at } \\
\text { which dark- } \\
\text { blur colour } \\
\text { appears }\end{array} & \begin{array}{l}\text { Total } \\
\text { calculated } \\
\text { volume of } \\
\text { solution FF } \\
\text { which has } \\
\text { reacted }(\mathrm{x} \\
\left.\mathrm{cm}^{3}\right)\end{array}
$$ \& \begin{array}{l}(\mathrm{a}-\mathrm{x}), where a

initial

volume of FF

in the mixture

\left(\mathrm{cm}^{3}\right)\end{array} \& log(\mathrm{a}-\mathrm{x})\end{array}\right]\)| |
| :--- |
| 2.50 |

(a) Plot a graph of ($a-x$) against time, t.
(b) (i) Plot a graph of log $(a-x)$ against time, t
(ii) Determine the slope of this graph
(c) Using your two graphs (in (a) and (b)) above, what is the order of the reaction with respect to hydrogen peroxide? Explain why.

Experimental Data

Total volume of EE added $\left(\mathrm{cm}^{3}\right)$	Time, t , at which dark- blur colour appears (sec)	Total calculated volume of solution FF which has reacted $(x$ $\left.\mathrm{cm}^{3}\right)$	$(\mathrm{a}-\mathrm{x})$, where a initial volume of FF in the mixture $\left(\mathrm{cm}^{3}\right)$	log (a-x)

This information is sufficient to fill in the remaining sections of the table, plot the graphs, and answer the questions.

Question 15 -- NECTA 2006, Paper 3A

Partition Coefficient

You are given the following:
W_{1} : 0.1 M sodium hydroxide
W_{2} : Solution containing an unknown concentration of succinic acid
W_{3} : Phenolphthalein indicator
W_{4} : Diethyl ether

Theory:

At a constant temperature, succinic acid dissolves in both water and diethyl ether, while maintaining a constant ratio of concentrations in the solvents under consideration.

PROCEDURE 1:

(i) Pipette $25 \mathrm{~cm}^{3}$ (or $20 \mathrm{~cm}^{3}$) of W_{2} into a clean conical flask. Add to it 2-3 drops of W_{3}.
(ii) Put W_{1} into the burette
(iii) Titrate very carefully solution W_{2} against W_{1} till there is a colour change. Record the volume of W_{1} used as well as the room temperature.

(a) Results

(i) The volume of the pipette used was \qquad cm^{3}.
(ii) The volume of W_{1} used is \qquad cm^{3}.
(iii) The room temperature is \qquad ${ }^{\circ} \mathrm{C}$.

PROCEDURE 2:

(i) Measure $100 \mathrm{~cm}^{3}$ of W_{4} using a measuring cylinder and place it into a separating funnel.
(ii) Add $100 \mathrm{~cm}^{3}$ of W_{2} by means of a measuring cylinder into the funnel in (i) above. Shake well and allow the system to stand for a few minutes.
(iii) Run off the aqueous layer. Using a measuring cylinder, put $25 \mathrm{~cm}^{3}$ (or $20 \mathrm{~cm}^{3}$) of the aqueous layer into a clean conical flask. Titrate very carefully this aliquot against W_{1} using W_{3} as indicator.

Record the volume of W_{1} used.
(b) Results:
(i) Volume of the aqueous layer taken was \qquad cm^{3}.
(ii) Volume of W_{1} used was \qquad cm^{3}.
(c) Write down a balanced chemical equation representing the reaction taking place in procedure 1.(iii).
(d) Calculate the
(i) initial concentration of W_{2} in water.
(ii) final concentration of W_{2} in the aqueous layer.
(e) Deduce the concentration of W_{2} in the organic layer.
(f) Calculate the partition coefficient of W_{2} between water and diethyl ether W_{4}.

Experimental Results

(a) Results

(i) The volume of the pipette used was $20 \mathrm{~cm}^{3}$.
(ii) The volume of W_{1} used is $20.9 \mathrm{~cm}^{3}$.
(iii) The room temperature is $27^{\circ} \mathrm{C}$

(b) Results:

(i) Volume of the aqueous layer taken was $20 \mathrm{~cm}^{3}$.
(ii) Volume of W_{1} used was $16 \mathrm{~cm}^{3}$

This information is enough for you to answer the questions.

Answers to Question 1 -- NECTA 1999

Here is the complete set of results:

The volume of the pipette used was \qquad 25 cm^{3}

Titration	Pilot	1	2	3
Second end point $\left(\mathrm{V}_{2}\right.$ $\left.\mathrm{cm}^{3}\right)$	30.3	30.1	29.7	29.8
first end point $\left(\mathrm{V}_{1} \mathrm{~cm}^{3}\right)$	17.6	17.7	17.4	17.3
initial volume $\left(\mathrm{V}_{0} \mathrm{~cm}^{3}\right)$	0	0	0	0
volume used $\left(\mathrm{V}_{1}-\mathrm{V}_{0}\right)$	17.6	17.7	17.4	17.3
Volume used $\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$	12.7	12.4	12.3	12.5

The average $\mathrm{V}_{1}-\mathrm{V}_{0}$ is $17.47 \mathrm{~cm}^{3}$. This is the volume needed to reach the first colour change, which was the change of A3 (POP) from pink to colourless. In the first line of the summary, we write: cm^{3} of Solution $A 1$ required 17.47 cm^{3} of $A 2$ in the presence of $A 3$ for complete neutralization.

The average $\mathrm{V}_{2}-\mathrm{V}_{1}$ is $12.4 \mathrm{~cm}^{3}$. This is the volume needed to reach the second colour change, which was the change of A4 (MO) from yellow/orange to red. In the second line of the summary, we write:
$\underline{25} \mathrm{~cm}^{3}$ of Solution $A 1$ required $\quad 12.4 \mathrm{~cm}^{3}$ of $A 2$ in the presence of $A 4$ for complete neutralization.

Question (a):

There are three neutralization reactions taking place in this experiment. The ionic equations for these reactions are:

$$
\mathrm{H}^{+}+\mathrm{OH}^{-} \cdot \mathrm{H}_{2} \mathrm{O}
$$

$$
\begin{aligned}
& \mathrm{H}+\mathrm{CO} 32-\cdot \\
& \mathrm{HCO}_{3}-\mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} \\
& \cdot \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

It will be more helpful for us to write the full equation, however.
i) $\mathrm{NaOH}+\mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}+$
NaCl ii) $\quad \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{HCl}$.
$\mathrm{NaHCO}_{3}+\mathrm{NaCl}$
iii) $\mathrm{NaHCO} 3+\mathrm{HCl} \cdot \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

Equations (ii) and (iii) together represent the complete neutralisation of sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$. To show the complete neutralisation of sodium carbonate, add equations (ii) and (iii) to get the overall reaction:

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \cdot 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

One mole of sodium carbonate reacts with two moles of HCl : one mole of sodium carbonate requires two moles of HCl for complete neutralization.

Question (b) (i):

We must determine how much HCl is needed to neutralise NaOH and how much HCl is needed to neutralise $\mathrm{Na}_{2} \mathrm{CO}_{3}$. In order to do this, we must write out our three neutralisation reactions along with which indicator shows us the completion of each reaction.

In general, a titration of:
(i) a strong base and a weak acid requires POP as indicator
(ii) a strong acid and a weak base requires $M O$ as indicator
(iii) a strong acid and a strong base can use either POP or MO as indicator.

Therefore:
$M O$ is a good indicator for titration of a weak base against strong acid.
POP is a good indicator for titration of a strong acid against a weak base or a strong base.

In reaction (iii), NaHCO_{3}, a weak base, reacts with HCl , a strong acid. MO must be used for this reaction. In reaction (i), NaOH , a strong base, and HCl, a strong acid, react. This can be indicated by MO or POP. In this pracitcal, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ will be considered a strong base, so it also can be indicated by POP or MO. The three reactions, and the indicator which shows the completion of each reaction, is shown below:

```
    of reaction i) \(\mathrm{NaOH}+\mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl}\)
        POP ii) \(\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{HCl} \cdot \mathrm{NaHCO}_{3}+\mathrm{NaCl}\)
        POP
```

iii) $\mathrm{NaHCO}_{3}+\mathrm{HCl} \cdot \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
MO

Because double indicator titrations involving a mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaOH are so common, it is important to remember the choice of indicators shown above.

Looking back to the summary, we see that $17.47 \mathrm{~cm}^{3}$ of HCl were required to reach the first colour change, which was POP. This means that $17.47 \mathrm{~cm}^{3}$ of HCl were needed to complete reaction (i) and reaction (ii) together, because both these reactions are indicated by POP.

We also see that $12.4 \mathrm{~cm}^{3}$ of HCl were required to reach the second colour change, which was MO. This means that $12.4 \mathrm{~cm}^{3}$ of HCl were required to complete reaction (iii), because this reaction was indicated by MO.

But we have a problem. We know that $17.47 \mathrm{~cm}^{3}$ of HCl are needed to complete reactions (i) and (ii) together, but how much of that volume is used in equation (i) by itself, and how much is used in equation (ii) by itself? We need to determine this in order to find the volume of HCl required to neutralise NaOH by itself.

The way to solve the problem is to realise that equation (ii) and equation (iii) will each use the same volume of HCl . Why? The NaHCO_{3} reactant in equation (iii) is formed from the $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in equation (ii) in a $1: 1$ ratio. The amount of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is therefore the same as the amount of NaHCO_{3}. Because the amounts of the two bases are the same, an equal amount of acid will be needed to neutralise them.

We know that $12.4 \mathrm{~cm}^{3}$ of HCl were needed to complete reaction (iii). This means that $12.4 \mathrm{~cm}^{3}$ of HCl were also needed to complete reaction (ii), since reactions (ii) and (iii) use the same volume of HCl for neutralisation. The volume of HCl used in reaction (i) must be $17.47 \mathrm{~cm}^{3}-12.4 \mathrm{~cm}^{3}=5.07 \mathrm{~cm}^{3}$.

Volume of HCl needed to complete reaction
i) $\mathrm{NaOH}+\mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl}$
$5.07 \mathrm{~cm}^{3}$ ii) $\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{HCl} \cdot \mathrm{NaHCO}_{3}+$
$\mathrm{NaCl} \quad 12.4 \mathrm{~cm}^{3}$ iii) $\mathrm{NaHCO}_{3}+\mathrm{HCl} \cdot \mathrm{NaCl}$
$+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \quad 12.4 \mathrm{~cm}^{3}$

Now we can finally answer questions (i) and (ii). The complete neutralisation of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is given by reaction (ii) together with reaction (iii). So the volume of HCl needed for complete neutralisation of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is $12.4 \mathrm{~cm}^{3}+$ $12.4 \mathrm{~cm}^{3}=\mathbf{2 4 . 8} \mathbf{~ c m}^{3}$.

Question (b) (ii):

The complete neutralisation of NaOH is given by equation (i) by itself. The volume of HCl required to complete reaction (i) is $5.07 \mathrm{~cm}^{3}$, so the volume of HCl needed to completely neutralise NaOH is $\mathbf{5 . 0 7} \mathbf{~ c m}^{\mathbf{3}}$.

Question (b) (iii):
To find the molarity of $\mathrm{Na}_{2} \mathrm{CO}_{3}$, we must use out $\mathrm{M}_{\mathrm{A}} \mathrm{V}_{\mathrm{A}}$ formula:

$$
\frac{M_{A} V_{A}}{n_{A}}=\frac{M_{B} V_{B}}{n_{B}}
$$

The neutralisation of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is given by the equation:

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \cdot 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

There is a $2: 1$ mole ratio between HCl and $\mathrm{Na}_{2} \mathrm{CO}_{3}$, so $\mathrm{n}_{\mathrm{A}}=2$ and $\mathrm{n}_{\mathrm{B}}=$ 1. $M_{A}=1 \mathrm{M}$ (given by the question), $V_{A}=24.8 \mathrm{~cm}^{3}$ (the volume of HCl needed for complete neutralisation of $\mathrm{Na}_{2} \mathrm{CO}_{3}$, reaction (ii) + (reaction (iii)), and $\mathrm{V}_{\mathrm{B}}=25 \mathrm{~cm}^{3}$ (the volume of the pipette). Solving the equation for our unknown, M_{B}, we get:

$$
M_{B}=\frac{M_{A} V_{A} n_{B}}{n_{A} V_{B}}
$$

Substituting in the known values, we find $M_{B}=0.496 \mathrm{M}$, approximately $\mathrm{M}_{\mathrm{B}}=$ 0.5 M . This tells us that the molarity of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is $\mathbf{0 . 5} \mathbf{~ M}$.

Using a similar method, we can also calculate the molarity of NaOH . There are two differences. For V_{A} we use $5.07 \mathrm{~cm}^{3}$, because this was the volume of HCl used to neutralise NaOH by itself. Also, $\mathrm{n}_{\mathrm{A}}=1$ and $\mathrm{n}_{\mathrm{B}}=1$, because in the neutralisation reaction of NaOH there is a $1: 1$ mole ratio between acid and base. The other values are the same: $M_{A}=1 \mathrm{M}$ (given by the question), and $V_{B}=25 \mathrm{~cm}^{3}$ (the volume of the pipette). Substituting this value into the equation:

$$
M_{B}=\frac{M_{A} V_{A} n_{B}}{n_{A} V_{B}}
$$

We find that $M_{B}=0.2028$, or approximately $\mathbf{M}_{\mathbf{B}}=\mathbf{0 . 2}$.

Question (b) (iv):

To find the masses of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaOH in the mixture, we first must convert from molarity ($\mathrm{mol} / \mathrm{dm}^{3}$) into gram concentration ($\mathrm{g} / \mathrm{dm}^{3}$). To make this conversion, multiply the molarity (units: $\mathrm{mol} / \mathrm{dm}^{3}$) times the molar mass (units: $\mathrm{g} / \mathrm{mol}$). The answer will be in units of $\mathrm{g} / \mathrm{dm}^{3}$.
For $\mathrm{Na}_{2} \mathrm{CO}_{3}: 0.5 \mathrm{~mol} / \mathrm{dm}^{3} \times 106 \mathrm{~g} / \mathrm{mol}=53 \mathrm{~g} / \mathrm{dm}^{3}$
For $\mathrm{NaOH}: 0.2 \mathrm{~mol} / \mathrm{dm}^{3} \times 40 \mathrm{~g} / \mathrm{mol}=8 \mathrm{~g} / \mathrm{dm}^{3}$

Now we multiply the gram concentration times the volume of the solution in dm^{3}. The question does not specify the volume of the solution, however, so we will assume that the question refers to a solution with volume $250 \mathrm{~cm}^{3}$, or $0.25 \mathrm{dm}^{3}$. To find the masses:

For $\mathrm{Na}_{2} \mathrm{CO}_{3}: 53 \mathrm{~g} / \mathrm{dm}^{3} \times 0.25 \mathrm{dm}^{3}=\mathbf{1 3 . 2 5}$
$\mathbf{g ~ N a} \mathbf{N O}_{\mathbf{3}} \quad$ For $\mathrm{NaOH}: 8 \mathrm{~g} / \mathrm{dm}^{3} \times 0.25 \mathrm{dm}^{3}=\mathbf{2}$ g NaOH.

Answers to Question 2 -- NECTA 1995

The complete set of data is given below:

The volume of the pipette used was
$20 \mathrm{~cm}^{3} \quad$ The volume of the burette
used was $50 \mathrm{~cm}^{3}$ BURETTE READINGS:

Titration number	PILOT	1	2	3
1. Initial Reading	0.0	0.0	0.0	0.0
2. Final Reading using MO	10.3	10.1	9.8	9.8
3. Final Reading using POP	26.4	26.2	25.7	25.9
4. First titre value (2- 1) using MO	10.3	10.1	9.8	9.8
5. Second titre value $(3-2)$ using POP	16.1	16.1	15.9	16.1

SUMMARY:
$20 \mathbf{c m}^{\mathbf{3}}$ of solution PP required $\mathbf{9 . 9} \mathbf{c m}^{\mathbf{3}}$ of solution OQ when MO was used and $\mathbf{1 6 . 0 3} \mathbf{~ c m}^{\mathbf{3}}$ of solution OQ when POP was used.

Note: To find the average titre values, do not use the pilot. Take the average of the titre values of Titration 1,2 , and 3.

Question (a):

PP is a mixture of two acids, so in the presence of PP, Methyl Orange will be red in the presence of acid. When we titrate PP with NaOH , the solution becomes more basic, so methyl orange becomes yellow. So the colour change is from red to yellow.

POP is colourless in the presence of an acid, but pink in the presence of a base. Initially POP will be colourless, because PP is an acidic solution. As we titrate with NaOH , the solution becomes more basic. At the end point, NaOH neutralises the last of the $\mathrm{CH}_{3} \mathrm{COOH}$, so the solution becomes basic, and the POP will becomes pink. So the colour change is from colourless to pink.

The colour change for the titration using MO was from red to yellow and for the titration when POP was used was from colourless to pink.

Question (b):

In general, a titration of:
(i) a strong base and a weak acid requires POP as indicator
(ii) a strong acid and a weak base requires $M O$ as indicator
(iii) a strong acid and a strong base can use either POP or MO as indicator.

Therefore:
$M O$ is a good indicator for titration of a strong base against strong acid. POP is a good indicator for titration of a strong base against a weak acid or a strong acid.

Question (c):

The first titre value shows the volume of NaOH needed to reach the end point of MO. MO indicates a strong base against a strong acid. In this question, the strong acid is HCl . Therefore, the first titre value shows the volume of NaOH required to neutralise HCl :
The first titre value signifies the titration of HCl against sodium hydroxide.
The second titre value shows the volume of NaOH needed to reach the end point of POP. POP indicates a strong base against a weak acid or a strong acid. The strong acid, HCl , has already been neutralised, so only the weak acid $\mathrm{CH}_{3} \mathrm{COOH}$ remains. In this question, the weak acid is $\mathrm{CH}_{3} \mathrm{COOH}$. Therefore, the second titre value shows the volume of NaOH required to neutralise $\mathrm{CH}_{3} \mathrm{COOH}$.

The second titre value signifies the titration of $\mathrm{CH}_{3} \mathrm{COOH}$ against sodium hydroxide.

Question (d):

(i) $\mathrm{NaOH}+\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NaCH}_{3} \mathrm{COO}$
(ii) $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl}$

Question (e):

Before continuing, we must be clear about which indicator is indicating which reaction. MO indicates the neutralisation of HCl by NaOH (strong acidstrong base), while POP indicates the neutralisation of $\mathrm{CH}_{3} \mathrm{COOH}$ by NaOH (weak acid-strong base).

When POP was added, only acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ was present; the HCl had already been finished. To find the concentration of the acetic acid, we use $M_{A} V_{A}$:

$$
\frac{M_{A} V_{A}}{n_{A}}=\frac{M_{B} V_{B}}{n_{B}}
$$

The acid (A) is acetic acid and the base (B) is $\mathrm{NaOH} . \mathrm{M}^{M_{A}=\frac{M_{B} V_{B} n_{A}}{n_{B} V_{A}}}$ A, the molarity of acetic acid, is unknown:
M_{B}, the molarity of the base, is $0.1 \mathrm{M} . \mathrm{V}_{\mathrm{B}}=16.03 \mathrm{~cm}^{3}$ (from the volume of OQ required to change the colour of POP). $V_{A}=20 \mathrm{~cm}^{3}$ (the volume of the pipette. Do not worry that acetic acid is only a portion of this total $20 \mathrm{~cm}^{3}$. You need to use the tota/volume of the pipette.), $n_{A}=1$, and $n_{B}=1$. Substituting these values into the equation, we find $\mathbf{M}_{\mathbf{A}}=\mathbf{0 . 0 8} \mathbf{~ m o l} / \mathbf{d m}^{\mathbf{3}}$ of $\mathrm{CH}_{3} \mathbf{C O O H}$. This is the concentration (in $\mathrm{mol} / \mathrm{dm}^{3}$) of the acid solution when POP was added.

When MO was added, however, both HCl and $\mathrm{CH}_{3} \mathrm{COOH}$ were present in the solution PP.
We already know the molarity of acetic acid: $0.08 \mathrm{~mol} / \mathrm{dm}^{3}$. How do we find the molarity of the HCl ? We know from the summary that $9.9 \mathrm{~cm}^{3}$ of solution $\mathrm{OQ}(\mathrm{NaOH})$ were required to reach the end point of MO , and that MO indicates the neutralisation of HCl . Therefore, $9.9 \mathrm{~cm}^{3}$ of NaOH were required to neutralise the HCl .

We again use $M_{A} V_{A}$, with M_{A} as our unknown. In this case, M_{A} refers to the molarity of HCl :

$$
M_{A}=\frac{M_{B} V_{B} n_{A}}{n_{B} V_{A}}
$$

$M_{B}=0.1 \mathrm{M}, V_{B}=9.9 \mathrm{~cm}^{3}$ (the volume of NaOH required to reach the end point of MO), $\mathrm{V}_{\mathrm{A}}=20 \mathrm{~cm}^{3}$
(volume of the pipette), $\mathrm{n}_{\mathrm{A}}=1$ and $\mathrm{n}_{\mathrm{B}}=1$. Substituting the values into the equation, we find $\mathrm{M}_{\mathrm{A}}=0.0495 \mathrm{M}$, or approximately $\mathrm{M}_{\mathrm{A}}=0.05 \mathrm{M}$. This means the concentration of $\mathbf{H C l}$ was $\mathbf{0 . 0 5} \mathbf{~ m o l} / \mathbf{d m}^{\mathbf{3}}$. When MO was added, both acetic acid and HCl were present. So the concentration of the acid solution when MO was added is the concentration of HCl together with the
concentration of acetic acid. We add 0.05 M HCl with 0.08 M CH 33 COOH to get a total acid concentration of 0.13 M .

Question (f):

To find the amount in grams of HCl , first we must find the gram concentration. Multiply the molarity times the molar mass. The molar mass of HCl is $36.5 \mathrm{~g} / \mathrm{mol}$.

$$
0.05 \mathrm{~mol} / \mathrm{dm}^{3} \times 36.5 \mathrm{~g} / \mathrm{mol}=1.825
$$

$\mathrm{g} / \mathrm{dm}^{3}$ This means that in $1 \mathrm{dm}^{3}$ of solution, there are

1.825 grams of HCl .

Question (g):

To find the amount in grams of acetic acid, first find the gram concentration:

$$
0.08 \mathrm{~mol} / \mathrm{dm}^{3} \times 60 \mathrm{~g} / \mathrm{mol}=4.8 \mathrm{~g} / \mathrm{dm}^{3} .
$$

This means that in 1 dm 3 of solution, there are 4.8 grams of acetic acid.

Answers to Question 3 -- NECTA 2006

Here are the complete data tables:

Burette Readings:

Titration number	Pilot	1	2	3
Final reading $\left(\mathrm{cm}^{3}\right)$	28.9	28.8	28.8	28.6
Initial Reading $\left(\mathrm{cm}^{3}\right)$	0.00	0.00	0.00	0.00
Titre Volume $\left(\mathrm{cm}^{3}\right)$	28.9	28.8	28.8	28.6

(b) $25 \mathrm{~cm}^{3}$ of AA_{1} required $28.73 \mathrm{~cm}^{3}$ of AA_{2} for complete reaction

Question (c):

To calculate the molarity of the acid solution AA_{2}, we use the dilution formula, which says:

$$
\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}
$$

The left-hand side of the equation refers to a solution before a change, while the right-hand side refers to the solution after a change. We see from the information provided that initially the HCl solution has a molarity of 0.25 M and a volume of $750 \mathrm{~cm}^{3}$. Thus, $\mathrm{M}_{1}=0.25$ and $\mathrm{V}_{1}=750 \mathrm{~cm}^{3}$. This initial solution is diluted to a volume of 937.5 cm 3 . What is the molarity of this new solution, M_{2} ?

$$
M_{2}=\frac{M_{1} V_{1}}{V_{2}}=\frac{0.25 \mathrm{M} \times 750 \mathrm{~cm}^{3}}{937.5 \mathrm{~cm}^{3}}=0.2 \mathrm{M}
$$

Thus, the molarity of AA2 is 0.2 M .

Question (d):

First we will calculate the molarity of AA_{1} with respect to NaHCO_{3}. Answering this question does not require us to use experimental data: everything we need to answer this question is provided. We are told that solution AA_{1} is "contaminated with 1.05 g of pure sodium hydrogen carbonate" and that the volume of the solution is $250 \mathrm{~cm}^{3}$. This is enough to calculate the molarity. Remember, molarity is a measure of concentration in units of mol per dm^{3}. How many moles are there in 1.05 g of NaHCO_{3} ? The molar mass of NaHCO_{3} is $84 \mathrm{~g} / \mathrm{mol}$. We use the equation below:

$$
n=\frac{m}{M_{r}}=\frac{1.05 \mathrm{~g}}{84 \mathrm{~g} / \mathrm{mol}}=0.0125 \mathrm{~mol}
$$

The volume of the solution is $250 \mathrm{~cm}^{3}$, or $0.25 \mathrm{dm}^{3}$. To find the molarity, we divide the number of moles by the volume:

$$
\frac{0.0125 \mathrm{~mol}}{0.25 \mathrm{dm}^{3}}=0.05 \frac{\mathrm{~mol}}{\mathrm{dm}^{3}}
$$

The molarity of solution AA_{1} with respect to NaHCO_{3} is thus 0.05 M .

The molarity of AA_{1} with respect to $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ is a little more difficult. Consider the two neutralization reactions that take place in this experiment:

$$
\begin{gathered}
\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \cdot 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \ldots \ldots . . \text { I } \mathrm{NaHCO}_{3}+\mathrm{HCl} . \\
\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \ldots \ldots \text { II }
\end{gathered}
$$

We know the total amount of HCl that is needed to complete both reactions: $28.73 \mathrm{~cm}^{3}$ (the volume of HCl added from the burette). To find the molarity of $\mathrm{Na}_{2} \mathrm{CO}_{3}$, we must know how much HCl is used in equation I only. But how can we determine what portion of the total HCl was used in equation I and what portion was used in equation II?

We know the molarity of NaHCO_{3}, so we can use $\mathrm{M}_{\mathrm{A}} \mathrm{V}_{\mathrm{A}}$ to determine the volume of HCl used in equation II. We want to make V_{A} the subject, since we want to find the volume of the acid HCl used in equation II.

$$
V_{A}=\frac{M_{B} V_{B} n_{A}}{M_{A} n_{B}}
$$

$\mathrm{M}_{\mathrm{B}}=0.05 \mathrm{M}$ (the molarity of the base NaHCO_{3}, calculated in Question (d) part (i)). $V_{B}=25 \mathrm{~cm}^{3}$ (the volume of the pipette with which solution $A A_{1}$, the mixture of bases, was added to the conical flask), and $\mathrm{M}_{\mathrm{A}}=0.2 \mathrm{M}$ (calculated in Question (c)). For the reaction between HCl and $\mathrm{NaHCO}_{3}, \mathrm{n}_{\mathrm{A}}=1$ and $\mathrm{n}_{\mathrm{B}}=1$.

$$
V_{A}=\frac{0.05 M \times 25 \mathrm{~cm}^{3} \times 1}{0.2 M \times 1}=6.25 \mathrm{~cm}^{3}
$$

$6.25 \mathrm{~cm}^{3}$ of the HCl is used in the neutralization of NaHCO_{3}, equation II. How much HCl was used in the neutralization of $\mathrm{Na}_{2} \mathrm{CO}_{3}$, equation I? We take the total volume of $\mathrm{HCl}, 28.73 \mathrm{~cm}^{3}$, minus the volume used in equation II, 6.25 cm^{3}. $28.73 \mathrm{~cm}^{3}-6.25 \mathrm{~cm}^{3}=22.48 \mathrm{~cm}^{3}$. The volume of HCl used to neutralize $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (equation I) is thus $22.58 \mathrm{~cm}^{3}$.
We can now use $M_{A} V_{A}$ again, with M_{B} as the subject, to find the molarity of $\mathrm{Na}_{2} \mathrm{CO}_{3}$.

$$
M_{B}=\frac{M_{A} V_{A} n_{B}}{V_{B} n_{A}}
$$

$\mathrm{M}_{\mathrm{A}}=0.2 \mathrm{M}, \mathrm{V}_{\mathrm{A}}=22.58 \mathrm{~cm}^{3}$ (the volume of HCl used in equation I), and $\mathrm{V}_{\mathrm{B}}=$ $25 \mathrm{~cm}^{3}$ (the volume of the pipette). For equation $\mathrm{I}, \mathrm{n}_{\mathrm{B}}=1$ and $\mathrm{n}_{\mathrm{A}}=2$.

$$
M_{B}=\frac{0.2 M \times 22.58 \mathrm{~cm}^{3} \times 1}{25 \mathrm{~cm}^{3} \times 2}=0.09 \mathrm{M}
$$

Thus, the molarity of the $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ was 0.09 M . The molarity of AA_{1} with respect to $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \times \mathrm{H}_{2} \mathrm{O}$ was $\mathbf{0 . 0 9 M}$. Do not worry about the hydrated waters; they have no effect in this calculation.

Answers to Question 4 -- NECTA 1994

The complete results are shown below:

The volume of the pipette used was $25 \mathrm{~cm}^{3}$
The volume of the burette used was $50 \mathrm{~cm}^{3}$

Titration Number	Pilot	1	2	3
Final reading $\left(\mathrm{cm}^{3}\right)$	33.8	33.6	33.7	33.7

Initial reading $\left(\mathrm{cm}^{3}\right)$	0.0	0.0	0.0	0.0
Titre $\left(\mathrm{cm}^{3}\right)$	33.8	33.6	33.7	33.7

The solution mixture required $33.67 \mathrm{~cm}^{3}$ of solution ZZ for complete neutralization of excess SS.

Before starting, it is important to understand what is happening in this practical. Solution TT is a weakly-acidic solution, with ammonium ion $\left(\mathrm{NH}_{4}{ }^{+}\right)$ acting as a weak acid. When we add Solution SS (NaOH), the NaOH neutralizes the $\mathrm{NH}_{4}{ }^{+}$:

$$
\mathrm{NaOH}+\mathrm{NH}_{4}^{+} \cdot \mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{3}+\mathrm{Na}^{+}
$$

But the NaOH is added in excess, so some amount of it remains after the neutralization of $\mathrm{NH}_{4}{ }^{+}$is complete. This excess NaOH is then neutralized by $\mathrm{H}_{2} \mathrm{SO}_{4}$, which is added from the burette:

$$
2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

To summarize: $25 \mathrm{~cm}^{3}$ of NaOH is mixed with $\mathrm{NH}_{4}{ }^{+}$. A portion of this NaOH is used in the reaction with $\mathrm{NH}_{4}{ }^{+}$, while another portion is in excess. This portion in excess is later neutralized in the titration with $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Question (a):

To find the volume of excess $\mathrm{SS}(\mathrm{NaOH})$, we can use $\mathrm{M}_{\mathrm{A}} \mathrm{V}_{\mathrm{A}}$, with V_{B} as the subject, since the volume of excess SS is the volume of excess NaOH , the base. We use the data collected from the titration, since the purpose of the titration was to neutralize excess NaOH (base) with $\mathrm{H}_{2} \mathrm{SO}_{4}$ (acid).

$$
V_{B}=\frac{M_{A} V_{A} n_{B}}{n_{A} M_{B}}
$$

$\mathrm{M}_{\mathrm{A}}=0.025 \mathrm{M}$ (the molarity of the sulphuric acid), $\mathrm{V}_{\mathrm{A}}=33.67 \mathrm{~cm}^{3}$ (volume of acid added from the burette), and $\mathrm{M}_{\mathrm{B}}=0.15 \mathrm{M}$ (the molarity of the NaOH). From the neutralization reaction between NaOH and $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{n}_{\mathrm{A}}=1$ and $\mathrm{n}_{\mathrm{B}}=2$. Substituting these values into the equation, we find $V_{B}=11.22 \mathrm{~cm}^{3}$. So the volume of $\mathbf{N a O H}$ (solution $S S$) in excess is $\mathbf{1 1 . 2 2} \mathbf{~ c m}^{\mathbf{3}}$.

Question (b):

The total volume of NaOH added was $25 \mathrm{~cm}^{3} .11 .22 \mathrm{~cm}^{3}$ of this total was in excess. This means that $25 \mathrm{~cm}^{3}-11.22 \mathrm{~cm}^{3}=13.78 \mathrm{~cm}^{3}$ of NaOH was not in excess. This $13.78 \mathrm{~cm}^{3}$ of NaOH was used up in the reaction with
 used to liberate ammonia from a single portion of solution TT.

Question (c):

To find the mass of ammonia expelled from the mixture, first we need to find the number of moles of ammonia expelled from the mixture. To find the number of moles of ammonia, consider the quantitative reaction between NaOH and the ammonium salt:

$$
\mathrm{NaOH}+\mathrm{NH}_{4}^{+} \cdot \mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{3}+\mathrm{Na}^{+}
$$

This is a quantitative reaction, which means that the reaction will go to completion: all of the NaOH will react to form products. NaOH and NH_{3} are present in a 1:1 mole ratio; this means that x moles of NaOH will produce x moles of NH_{3}. The number of moles of NaOH will be the same as the number of moles of NH_{3}. So how many moles of NaOH were used in the reaction? We know the volume of NaOH used in the reaction with $\mathrm{NaOH}: 13.78 \mathrm{~cm}^{3}$. How many moles is this? We can use the relationship $n=M \times V$ Where $\mathrm{n}=$ number of moles, $\mathrm{M}=$ molarity, and $\mathrm{V}=$ volume in dm^{3}. The molarity of the NaOH is $0.15 \mathrm{~mol} / \mathrm{dm}^{3}$, while the volume is $13.78 \mathrm{~cm}^{3}$. Convert this volume to dm^{3} to get $0.01378 \mathrm{dm}^{3}$. The number of moles of NaOH is given by

$$
n=0.15 \frac{\mathrm{~mol}}{\mathrm{dm}^{3}} \times 0.01378 \mathrm{dm}^{3}=0.0021 \mathrm{~mol}
$$

If 0.0021 mol of NaOH reacted with $\mathrm{NH}_{4}{ }^{+}$, it means that 0.0021 mol of NH_{3} were formed. Convert the number of moles of ammonia into the mass of ammonia using the formula:

$$
n=\frac{m}{M_{r}}
$$

Rearranging this equation, we find $m=n \times M_{r}$. The number of moles of ammonia, n, is 0.0021 mol. The molar mass of ammonia, M_{r}, is $17 \mathrm{~g} / \mathrm{mol}$.

$$
m=0.0021 \mathrm{~mol} \times 17 \frac{\mathrm{~g}}{\mathrm{~mol}}=0.0357 \mathrm{~g}
$$

Thus, 0.0021 moles of ammonia are produced. 0.0021 moles of ammonia are equivalent to 0.0357 g of ammonia. Thus, $\mathbf{0 . 0 3 5 7} \mathbf{~ g}$ of $\mathbf{N H}_{3}$ are produced in the reaction between NaOH and $\mathrm{NH}_{4}{ }^{+}$and are expelled from the mixture as gas.

Question (d):

This question asks us to find the total mass of nitrogen in the expelled ammonia. It refers to elemental nitrogen (N) and not nitrogen gas, since no nitrogen gas is produced in this reaction.

In one molecule of NH_{3} there is one nitrogen atom. This means that in one mole of NH_{3} there is one mole of nitrogen; similarly, in 0.0021 moles of NH_{3}, there are 0.0021 moles of nitrogen. To find the mass of this nitrogen, use the relationship:

$$
m=n \times M_{r}
$$

The number of moles of nitrogen is 0.0021 mol, while the molar mass of nitrogen is $14 \mathrm{~g} / \mathrm{mol}$.

$$
m=0.0021 \mathrm{~mol} \times 14 \frac{\mathrm{~g}}{\mathrm{~mol}}=0.0294 \mathrm{~g}
$$

The mass of the nitrogen is 0.0294 g . The total mass of nitrogen in the expelled ammonia is $\mathbf{0 . 0 2 9 4}$ grams.

Question (e):

To find the percentage by weight of ammonia in the salt, first consider the formula for percentage by weight:

Weight Percentage of Ammonia $=\frac{\text { Weight of Ammonia }}{\text { TotalWeight }} \times 100 \%$

In this question, weight has the same meaning as mass. What is the mass of ammonia in the salt? In the procedure, we used $25 \mathrm{~cm}^{3}$ of the solution of the ammonium salt, $\mathrm{NH}_{4}{ }^{+}$. In this solution, we determined that the total mass of ammonia expelled from the mixture was 0.0357 g . What mass of ammonia would be expelled from the complete mixture, which had a volume of 1000 cm^{3} ? We can use cross-multiplication. If $25 \mathrm{~cm}^{3}$ of solution TT produces 0.0357 g , how many grams would $1000 \mathrm{~cm}^{3}$ of solution TT produce?

$$
\frac{25 \mathrm{~cm}^{3}}{1000 \mathrm{~cm}^{3}}=\frac{0.0357 \mathrm{~g}}{x}
$$

$x=1.428 \mathrm{~g}$ of ammonia in the total mixture of $1000 \mathrm{~cm}^{3}$. The total mass of the salt, given in the beginning of the question, is 6.60 g . Substituting these values into the equation for weight percentage:

$$
\frac{1.428 g}{6.6 g} \times 100 \%=21.6 \%
$$

The weight percentage of ammonia in the salt was $\mathbf{2 1 . 6 \%}$.

The complete results are shown below:

The volume of the pipette used was $25 \mathrm{~cm}^{3}$
The volume of the burette used was $50 \mathrm{~cm}^{3}$

Titration Number	Pilot	1	2	3
Final reading $\left(\mathrm{cm}^{3}\right)$	16.2	31.8	15.9	31.7
Initial reading $\left(\mathrm{cm}^{3}\right)$	0.0	16.2	0.0	15.9
Titre $\left(\mathrm{cm}^{3}\right)$	16.2	15.6	15.9	15.8

SUMMARY:

$25 \mathrm{~cm}^{3}$ of solution KK needed $15.77 \mathrm{~cm}^{3}$ of solution GG for complete reaction

Question (a):

The reaction between KMnO_{4} and $\mathrm{H}_{2} \mathrm{O}_{2}$ is a redox reaction. The permanganate ion, $\mathrm{MnO}_{4}{ }^{-}$, is reduced to Mn^{2+}, while the peroxide is oxidized to $\mathrm{O}_{2(\mathrm{~g})}$. This reduction of permanganate causes the purple colour of KmnO_{4} to disappear when the permanganate is added to the peroxide. Mn^{7+} (the oxidation state of manganese in MnO_{4}^{-}) is purple, while Mn^{2+} is colourless. So, as long as the MnO_{4}^{-}reacts with and is reduced by peroxide, the purple colour will disappear. When the purple colour remains, it means that the peroxide has been finished, and thus can no longer reduce the Mn^{7+}.

The unbalanced reaction is:

$$
\mathrm{MnO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}_{2} \cdot \mathrm{O}_{2}+\mathrm{Mn}^{2+}
$$

Following the normal procedure for balancing redox reactions, we find that the balanced reaction is:

$$
5 \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+} \cdot 5 \mathrm{O}_{2}+2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}
$$

Question (b):

This is a redox titration question; all titration questions require us to use the $\mathrm{M}_{\mathrm{A}} \mathrm{V}_{\mathrm{A}}$ formula to find concentrations:

$$
\frac{M_{A} V_{A}}{n_{A}}=\frac{M_{B} V_{B}}{n_{B}}
$$

We must first decide what is A and what is B. Let $A=\mathrm{H}_{2} \mathrm{O}_{2}$ and $B=\mathrm{MnO}_{4}^{-}$. Question (b) asks us to find the concentration of hydrogen peroxide, so our unknown will be M_{A} :

$$
M_{A}=\frac{M_{B} V_{B} n_{A}}{n_{B} V_{A}}
$$

Let us write what we know. M_{B} is the molarity of potassium permanganate. We know the gram concentration from the question: $3 \mathrm{~g} / \mathrm{dm}^{3}$. To convert from gram concentration to molarity, we divide the gram concentration by the molar mass of potassium permanganate, which is $158 \mathrm{~g} / \mathrm{mol}$.

$$
\frac{3 \mathrm{~g} / \mathrm{dm}^{3}}{158 \mathrm{~g} / \mathrm{mol}}=0.019 \mathrm{~mol} / \mathrm{dm}^{3}
$$

So the molarity of potassium permanganate, $\mathrm{M}_{\mathrm{B}}=0.019 \mathrm{M} . \mathrm{V}_{\mathrm{B}}=15.77 \mathrm{~cm}^{3}$ (the average titre from the burette). $V_{A}=25 \mathrm{~cm}^{3}$ (the volume of the pipette). From the balanced equation, we see that $n_{A}=5$ and $n_{B}=2$. Substituting these values into the equation above, we find that $M_{A}=0.02996 \mathrm{M}$, or approximately $\mathrm{M}_{\mathrm{A}}=0.03 \mathrm{M}$. So the molar concentration of hydrogen peroxide is $\mathbf{0 . 0 3} \mathbf{~ m o l} / \mathbf{d m}^{\mathbf{3}}$. To find the gram concentration, we multiply by the molar mass of $\mathrm{H}_{2} \mathrm{O}_{2}$, which is $34 \mathrm{~g} / \mathrm{mol}$.

$$
0.03 \mathrm{~mol} / \mathrm{dm}^{3} \times 34 \mathrm{~g} / \mathrm{mol}=
$$

$1.02 \mathrm{~g} / \mathrm{dm}^{3}$ So the gram concentration of hydrogen peroxide is $\mathbf{1 . 0 2} \mathbf{~ g} / \mathbf{d m}^{\mathbf{3}}$.

Question (c):

The formula for percentage purity is:

$$
\% \text { Purity }=\frac{\text { gram concentration pure }}{\text { gram concentration impure }} \times 100 \%
$$

The gram concentration of impure BaO_{2} is given by the question: 7.2 g of impure BaO_{2} are used to prepare $1 \mathrm{dm}^{3}$ of solution, so the gram concentration is $7.2 \mathrm{~g} / \mathrm{dm}^{3}$.

What is the gram concentration of pure BaO_{2} ? We must look at the mole ratio between $\mathrm{H}_{2} \mathrm{O}_{2}$ and BaO_{2}. We see from the balanced equation that one mole of BaO_{2} reacts to form one mole of $\mathrm{H}_{2} \mathrm{O}_{2}$. We also know the molarity of $\mathrm{H}_{2} \mathrm{O}_{2}$ is $0.03 \mathrm{~mol} / \mathrm{dm}^{3}$. Because the mole ratio is $1: 1$, we know that 0.03 moles of BaO_{2} react to form 0.03 moles $\mathrm{H}_{2} \mathrm{O}_{2}$ product. Therefore, the molarity of the (pure) BaO_{2} solution is also $0.03 \mathrm{~mol} / \mathrm{dm}^{3}$.
To convert this molarity to gram concentration, we multiply by the molar mass of BaO_{2}, which is $169 \mathrm{~g} / \mathrm{mol}$.

$$
0.03 \mathrm{~mol} / \mathrm{dm}^{3} \times 169 \mathrm{~g} / \mathrm{mol}=
$$

$5.07 \mathrm{~g} / \mathrm{dm}^{3}$ So the gram concentration of pure BaO_{2} is
$5.07 \mathrm{~g} / \mathrm{dm}^{3}$. The percentage purity is given by:

$$
\frac{5.07 \mathrm{~g} / \mathrm{dm}^{3}}{7.2 \mathrm{~g} / \mathrm{dm}^{3}} \times 100 \%=70.4 \%
$$

So the percentage purity of the barium peroxide was $\mathbf{7 0 . 4 \%}$.

Answers to Question 6 -- NECTA 1997

The completed results table and summary is below:

Titration	Pilot	1	2	3
Final volume $\left(\mathrm{m}^{3}\right)$	19.4	19.1	19.4	19.2
Initial volume $\left(\mathrm{cm}^{3}\right)$	0.0	0.0	0.0	0.0
Volume used $\left(\mathrm{cm}^{3}\right)$	19.4	19.1	19.4	19.2

Summary:

$25 \mathrm{~cm}^{3}$ of FA1 liberated sufficient Iodine to oxidize $19.23 \mathrm{~cm}^{3}$ of FA2

Before proceeding with the questions, we should be sure to understand what it happening in this practical. When you mix FA1 (potassium dichromate) with FA3 (potassium iodide), the dichromate ion reacts with the iodide ion to form free Iodine $\left(\mathrm{I}_{2}\right)$ in the following reaction:

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 \mathrm{I}^{-} 14 \mathrm{H}^{+} \cdot 2 \mathrm{Cr}^{3+}+3 \mathrm{I}_{2}+7 \mathrm{H}_{2} \mathrm{O}
$$

The presence of the free Iodine causes the starch indicator to be blue in colour. The solution will retain this blue colour until all of the free Iodine $\left(\mathrm{I}_{2}\right)$ is again reduced to I^{-}. I_{2} is reduced to I^{-}by the thiosulphate ion $\left(\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}\right)$ in the following reaction:

$$
\text { I2 + } 2 \text { S2O32- • S4O62- + } 2 \text { I- }
$$

Thus, when you add thiosulphate from the burette, you are causing I_{2} to be reduced to I^{-}. The end point of the titration is when the I_{2} is finished and the solution loses its blue colour.

Question (a):

To find the molarity of the potassium dichromate, we use $\mathrm{M}_{\mathrm{A}} \mathrm{V}_{\mathrm{A}}$:

$$
\frac{M_{A} V_{A}}{n_{A}}=\frac{M_{B} V_{B}}{n_{B}}
$$

Let $A=\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and $\mathrm{B}=\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. We want to find M_{A}. Make M_{A} the subject:

$$
M_{A}=\frac{M_{B} V_{B} n_{A}}{n_{B} V_{A}}
$$

First we will find the mole ratio between $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. To do this, add the two equations together so that Iodine (I_{2}) cancels. The equations are shown below:

$$
\begin{aligned}
& \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 \mathrm{I}^{-} 14 \mathrm{H}^{+} \cdot 2 \mathrm{Cr}^{3+}+3 \mathrm{I}_{2}+7 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{I} 2+2 \mathrm{~S} 2 \mathrm{O} 32-\cdot \mathrm{S} 4 \mathrm{O} 2-+2 \mathrm{I}-
\end{aligned}
$$

For I_{2} to cancel, we must multiply the second equation by 3:

$$
3 \mathrm{I}_{2}+6 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \cdot 3 \mathrm{~S}_{4} \mathrm{O}_{6}{ }^{2-}+6 \mathrm{I}^{-}
$$

Add this equation to the first equation:

$$
\begin{aligned}
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 \mathrm{I}^{-}+14 \mathrm{H}^{+} & +3 \mathrm{I}_{2}+6 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \cdot 2 \mathrm{Cr}^{3+}+3 \mathrm{I}_{2}+7 \mathrm{H}_{2} \mathrm{O} \\
& +3 \mathrm{~S}_{4} \mathrm{O}_{6}^{2-}+6 \mathrm{I}^{-}
\end{aligned}
$$

Note that there are $3 \mathrm{I}_{2} \mathrm{~S}$ on the reactant side and $3 \mathrm{I}_{2} \mathrm{~S}$ on the product side: I_{2} and also I- cancel:

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-} \cdot 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{~S}_{4} \mathrm{O}_{6}^{2-}
$$

The mole ratio from this equation is $n_{A}=1$ and $n_{B}=6 . M_{B}$ is the molarity of the sodium thiosulphate.
The question tells us that solution FA2 is " 12.40 g of sodium thiosulphate pentahydrate
$\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}\right)$ in $500 \mathrm{~cm}^{3}$ of distilled water." The number of moles of sodium thiosulphate is given by

$$
n=\frac{m}{M_{r}}
$$

The mass of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ was 12.4 g , and the molar mass is $248 \mathrm{~g} / \mathrm{mol}$. 12.4 g divided by $248 \mathrm{~g} / \mathrm{mol}=0.05$ moles. But molarity is $\mathrm{mol} / \mathrm{dm}^{3}$. The volume of the solution was $500 \mathrm{~cm}^{3}$, or $0.5 \mathrm{dm}^{3}$. The molarity is $0.05 \mathrm{~mol} / 0.5$ $\mathrm{dm}^{3}=0.1 \mathrm{~mol} / \mathrm{dm}^{3}$. This is $\mathrm{M}_{\mathrm{B}} . \mathrm{V}_{\mathrm{B}}=19.23 \mathrm{~cm}^{3}$ (volume added from the burette) and $V_{A}=25 \mathrm{~cm}^{3}$ (volume added from the pipette). Substituting these values into $M_{A} V_{A}$, we find $M_{A}=0.0128 \mathrm{M}$, or approximately $\mathbf{M}_{A}=\mathbf{0 . 0 1 3} \mathbf{~ M}$.

Question (b):

To find the concentration in $\mathrm{g} / \mathrm{dm}^{3}$, we multiply the molarity times the molar mass. The molar mass of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is $294 \mathrm{~g} / \mathrm{mol}$. So the gram concentration is:

$$
0.013 \mathrm{~mol} / \mathrm{dm}^{3} \times 294 \mathrm{~g} / \mathrm{mol}=
$$

$3.82 \mathrm{~g} / \mathrm{dm}^{3}$ So the gram concentration of the $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is

$3.82 \mathrm{~g} / \mathrm{dm}^{3}$.

Question (c):

Percentage purity is equal to:
$\%$ Purity $=\frac{\text { gram concentration of pure }}{\text { gram concentration of impure }} \times 100 \%$

The pure concentration is $3.82 \mathrm{~g} / \mathrm{dm}^{3}$ (from Question (b)). The impure concentration can be found using information provided in the question: "FA1:
A solution made by dissolving 3.25 g of impure Potassium dichromate $\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$ in $500 \mathrm{~cm}^{3}$ of distilled water." The impure concentration is 3.25 g divided by the volume, $500 \mathrm{~cm}^{3}$ or $0.5 \mathrm{dm}^{3} .3 .25 \mathrm{~g} / 0.5 \mathrm{dm}^{3}=6.5 \mathrm{~g} / \mathrm{dm}^{3}$. Substituting these numbers into the equation, we find:

$$
\frac{3.82 \mathrm{~g} / \mathrm{dm}^{3}}{6.5 \mathrm{~g} / \mathrm{dm}^{3}} \times 100 \%=58.8 \%
$$

So the percentage purity of the $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution was $\mathbf{5 8 . 8 \%}$.

Answers to Question 7 -- NECTA 2003

Here is the complete set of data:

The volume of the pipette used was $25 \mathrm{~cm}^{3}$
The volume of the burette used was $50 \mathrm{~cm}^{3}$

Titration number	Pilot	1	2	3
Final reading $\left(\mathrm{cm}^{3}\right)$	23.0	44.4	21.3	42.4
Initial reading $\left(\mathrm{cm}^{3}\right)$	0.0	23.0	0.0	21.3
Titre volume used $\left(\mathrm{cm}^{3}\right)$	23.0	21.4	21.3	21.1

The average titre value, using experiments 1,2 , and 3 and ignoring the Pilot is $21.27 \mathrm{~cm}^{3}$.

Question (a):

It is possible to find the molarity of A2 without looking at our experimental data. Everything we need is provided in the question: "A2: a solution made by dissolving 12.40 g of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ in $500 \mathrm{~cm}^{3}$ of distilled
water." Molarity is concentration in $\mathrm{mol} / \mathrm{dm}^{3}$, so we must determine the number of moles of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, and the volume of the solution.
The number of moles, n, is given by

$$
n=\frac{m}{M_{r}}
$$

Where $m=$ mass (grams) and M_{r} is molar mass ($\mathrm{g} / \mathrm{mol}$). The molar mass of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is $248 \mathrm{~g} / \mathrm{mol}$, and the mass of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is given to be 12.40 g . The number of moles is then $12.4 \mathrm{~g} / 248 \mathrm{~g} / \mathrm{mol}=0.05 \mathrm{~mol}$. The volume is 500 cm 3 , or 0.5 dm 3 . To find the molarity, we divide the number of moles by the volume in dm^{3} : $0.05 \mathrm{~mol} / 0.5 \mathrm{dm}^{3}=\mathbf{0 . 1} \mathbf{~ m o l} / \mathbf{d m}^{3}$.

Question (b):

To find the molarity of A 1 we must use $\mathrm{M}_{\mathrm{A}} \mathrm{V}_{\mathrm{A}}$:

$$
\frac{M_{A} V_{A}}{n_{A}}=\frac{M_{B} V_{B}}{n_{B}}
$$

There are two reactions taking place. First, CuSO_{4} reacts with KI to liberate free Iodine (I_{2}):

$$
2 \mathrm{Cu} 2+(\mathrm{aq})+4 \mathrm{I}-(\mathrm{aq}) \cdot \mathrm{Cu} 2 \mathrm{I} 2(\mathrm{~s})+\mathrm{I} 2(\mathrm{~s})
$$

Then, the free Iodine reacts with sodium thiosulphate with starch as indicator:

$$
2 \mathrm{~S} 2 \mathrm{O} 32-(\mathrm{aq})+\mathrm{I} 2(\mathrm{~s}) \cdot \mathrm{S} 4 \mathrm{O} 62-(\mathrm{aq})+2 \mathrm{I}-(\mathrm{aq})
$$

The disappearance of the blue colour shows us that the reaction is complete and the I_{2} has been finished.

What is A and what is B ? The question is asking for us to find the molarity of $\mathrm{A} 1, \mathrm{CuSO}_{4}$, so we will say that A is CuSO_{4}. Then what is B ? B will be sodium thiosulphate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. Why? Because we already know the molarity of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (from Question (a)) and we can find the mole ratio between $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and CuSO_{4}.

So let us write down what we know. M_{A}, the molarity of CuSO_{4}, is unknown. $V A=25 \mathrm{~cm}^{3}$ (the volume of the pipette). $\mathrm{M}_{B}=0.1 \mathrm{M}$ (from Question (a)), and $V_{B}=21.27 \mathrm{~cm}^{3}$. To find the mole ratio, we must add the two equations together so that I_{2} cancels:

$$
\begin{aligned}
& 2 \mathrm{Cu} 2+(\mathrm{aq})+4 \mathrm{I}-(\mathrm{aq}) \cdot \mathrm{Cu} 2 \mathrm{I} 2(\mathrm{~s})+\mathrm{I} 2(\mathrm{~s}) \\
& 2 \mathrm{~S} 2 \mathrm{O} 32-(\mathrm{aq})+\mathrm{I} 2(\mathrm{~s}) \cdot \mathrm{S} 4 \mathrm{O} 62-(\mathrm{aq})+2 \mathrm{I}-(\mathrm{aq})
\end{aligned}
$$

See that there is one I_{2} on the product side of the first reaction, and one I_{2} on the reactant side of the second reaction. This means that the reactions can be added together and I_{2} will cancel without multiplying either equation by a constant. When we add the equations together we find:

$$
\begin{gathered}
2 \mathrm{Cu} 2+(\mathrm{aq})+4 \mathrm{I}-(\mathrm{aq})+2 \mathrm{~S} 2 \mathrm{O} 32-(\mathrm{aq})+\mathrm{I} 2(\mathrm{~s}) \cdot \mathrm{Cu} \mathrm{I} 2(\mathrm{~s})+\mathrm{I} 2(\mathrm{~s})+\mathrm{S} 4 \mathrm{O} 62-(\mathrm{aq}) \\
+2 \mathrm{I}-(\mathrm{aq})
\end{gathered}
$$

Note that I_{2} will cancel. And the mole ratio will be $\mathrm{n}_{\mathrm{A}}=2$ and $\mathrm{n}_{\mathrm{B}}=2$, because there are two moles of Cu^{2+} (the cation of CuSO_{4}) reacting with 2 moles of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$.

Whenever you have to find the mole ratio between two compounds in different reactions and I_{2} is present in both reactions, add the two equations together so that I_{2} cancels. This is a very useful procedure and allows you to find the mole ratio between compounds that are not in the same reaction.

Our unknown is M_{A} :

$$
M_{A}=\frac{M_{B} V_{B} n_{A}}{n_{B} V_{A}}
$$

Substituting values into the equation, we find $\mathbf{M}_{\mathbf{A}}=\mathbf{0 . 0 8 5} \mathbf{M}$.

Question (c):

To find the gram concentration, we multiply the molarity times the molar mass. The molar mass of CuSO_{4} is $159.5 \mathrm{~g} / \mathrm{mol}$. $0.085 \mathrm{~mol} / \mathrm{dm}^{3} \times 159.5$ $\mathrm{g} / \mathrm{mol}=13.6 \mathbf{g} / \mathrm{dm}^{3}$.

Question (d):

To find the percentage purity of Copper (II) oxide (CuO), first find the gram concentration of CuO . We know the gram concentration of CuSO_{4} (from Question (c)), but we do not know the gram concentration of CuO. What is the relationship between CuO and CuSO_{4} ?

Look back to equation (1):

$$
\begin{equation*}
\mathrm{CuO}+\mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathrm{CuSO}_{4}+\mathrm{H}_{2} \mathrm{O} \tag{1}
\end{equation*}
$$

We see from this equation that there is a $1: 1$ mole ratio between CuSO_{4} and CuO . We know from Question (b) that the molarity of CuSO_{4} is 0.085 $\mathrm{mol} / \mathrm{dm}^{3}$: In $1 \mathrm{dm}^{3}$ of solution, there are 0.085 moles of CuSO_{4}. This means that there were also 0.085 moles of CuO present in solution. In other words, 0.085 moles of CuO reacted with sulphuric acid to form 0.085 moles of CuSO_{4} in $1 \mathrm{dm}^{3}$ of solution. The molarity of the CuO is therefore $0.085 \mathrm{~mol} / \mathrm{dm}^{3}$. The molar mass of CuO is $79.5 \mathrm{~g} / \mathrm{mol}$. The gram concentration of (pure) CuO is $0.085 \mathrm{~mol} / \mathrm{dm} 3 \times 79.5 \mathrm{~g} / \mathrm{mol}=6.76 \mathrm{~g} / \mathrm{dm}^{3}$. Percentage purity is given by the formula:

$$
\% \text { Purity }=\frac{\text { gram concentration pure }}{\text { gram concentration impure }} \times 100 \%
$$

The gram concentration of pure CuO is $6.76 \mathrm{~g} / \mathrm{dm}^{3}$. To find the gram concentration of impure CuO, look back to the question: "A1: a solution of copper(II) sulphate (CuSO_{4}), obtained by reacting 9 g of impure copper (II) oxide (CuO) with dilute sulphuric acid and making the solution to $1 \mathrm{dm}^{3}$ using distilled water after filtering." 9 g of impure CuO were used to prepare 1 dm 3 of solution, so the gram concentration of impure CuO is $9 \mathrm{~g} / \mathrm{dm}^{3}$. The percentage purity is then:

$$
\frac{6.76 \mathrm{~g} / \mathrm{dm}^{3}}{9 \mathrm{~g} / \mathrm{dm}^{3}} x 100 \%=75.1 \%
$$

We see that the CuO was $\mathbf{7 5 . 1 \%}$ pure.

Answers to Question 8 -- NECTA 2005

The volume of the pipette used was $25 \mathrm{~cm}^{3}$.

Titration Number	Pilot	1	2	3
Final reading $\left(\mathrm{cm}^{3}\right)$	21.1	20.7	41.2	20.4
Initial Reading $\left(\mathrm{cm}^{3}\right)$	0.00	0.00	20.7	0.00
Volume used $\left(\mathrm{cm}^{3}\right)$	21.1	20.7	20.5	20.4

Summary: $25 \mathrm{~cm}^{3}$ of solution D_{1} required $20.53 \mathrm{~cm}^{3}$ of solution D_{2} for complete reaction.

Before continuing with the questions, let's make sure we understand what is happening in this practical. We have an iodine solution of unknown molarity. We are going to titrate this unknown iodine solution against sodium thiosulphate, whose molarity we know. We can use the reaction between iodine and sodium thiosulphate to determine the mole ratio between these two compounds in the reaction.

The indicator in this titration is starch. Starch indicates the presence of free iodine (I_{2}). If I_{2} is present, starch indicator is blue. If I_{2} is not present, the indicator is colourless. In this titration, solution D_{1} in the conical flask will be blue after addition of starch indicator, because I_{2} is present in solution D_{1}. The end point of this titration will be when the blue colour disappears. Why has the blue colour disappeared? Because $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$, being added from the burette,
has reduced all of the I_{2} to I^{-}. When the last of the I_{2} is converted into I^{-}, the starch indicator will go from blue to colourless, because the I_{2} has been finished.

Question (a):

To find the concentration of D_{2} in moles per dm^{3}, we simply take the number of moles, 0.025 , and divide it by the volume in dm^{3}. We must first convert the volume to $\mathrm{dm}^{3} .250 \mathrm{~cm}^{3}=0.25 \mathrm{dm}^{3}$. So the concentration in moles per $\mathrm{dm}^{3}=0.025 \mathrm{~mol} / 0.25 \mathrm{dm}^{3}=0.1 \mathrm{~mol} / \mathrm{dm}^{3}$.

Question (b):

(i)

To find the molarity of pure Iodine, we use the data from our titration and $\mathrm{M}_{\mathrm{A}} \mathrm{V}_{\mathrm{A}}$. The reaction that is being used to determine the molarity of pure Iodine is

$$
\mathrm{I} 2+2 \text { S2O32- } \cdot \mathrm{S} 4 \mathrm{O} 62-+2 \mathrm{I}-
$$

We know the molarity of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$, so we will be able to determine the molarity of I_{2}. Let $\mathrm{A}=\mathrm{I}_{2}$ and $\mathrm{B}=\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$. The subject of the equation will be M_{A}, since we are searching for the molarity of I_{2} :

$$
M_{A}=\frac{M_{B} V_{B} n_{A}}{n_{B} V_{A}}
$$

$M_{B}=0.1 \mathrm{M}$ (the molarity of the sodium thiosulphate), $V_{B}=20.53 \mathrm{~cm}^{3}$ (the volume of sodium thiosulphate added from the burette), and $V_{A}=25 \mathrm{~cm}^{3}$ (the volume of Iodine added from the pipette in solution D_{1}). From the balanced chemical equation, we see that the mole ratio is $n_{A}=1$ and $n_{B}=2$. Substituting these values into the equation above, we find $M_{A}=0.041 \mathrm{M}$. The molarity of pure I_{2} is thus $\mathbf{0 . 0 4 1} \mathbf{~ M}$. Remember, the value that you calculate with $\mathrm{M}_{\mathrm{A}} \mathrm{V}_{\mathrm{A}}$ is the pure molarity.

(ii)

To convert this molarity into gram concentration, we multiply the molarity times the molar mass of I_{2}. The molar mass of I_{2} is $254 \mathrm{~g} / \mathrm{mol}$. The gram concentration is thus $10.414 \mathrm{~g} / \mathrm{dm}^{3}$.

(iii)

The percentage purity of Iodine is given by the equation:

$$
\% \text { Purity }=\frac{\text { gram concentration pure }}{\text { gram concentration imp ure }} \times 100 \%
$$

The concentration of pure I_{2}, calculated in (ii), is $10.414 \mathrm{~g} / \mathrm{dm}^{3}$. The concentration of impure I_{2} can be calculated using the information given in the question: "D1: is a solution containing 13 g of an impure iodine in $1 \mathrm{dm}^{3}$
of aqueous solution." This means the impure Iodine had a gram concentration of 13 g in $1 \mathrm{dm}^{3}$, or $13 \mathrm{~g} / \mathrm{dm}^{3}$. Substituting these values into the equation, we find that the percentage purity is $\mathbf{8 0 . 1 \%}$ pure.

Question (c):

To increase the solubility of I_{2} in water, the I_{2} is mixed with potassium iodide, KI. Iodine and the iodide ion (I^{-}) react to form a complex ion that increases the solubility of I_{2}.

$$
\mathrm{I} 2(\mathrm{aq})+\mathrm{I}-(\mathrm{aq}) ~ \boxminus \mathrm{I} 3-(\mathrm{aq})
$$

Answers to Question 9 -- NECTA 1990

The complete results are shown below:

The volume of the pipette used was $20 \mathrm{~cm}^{3}$
The volume of the burette used was $50 \mathrm{~cm}^{3}$

Titration Number	Pilot	1	2	3
Final Reading	11.4	11.3	22.7	33.7
Initial Reading	0.0	0.0	11.3	22.7
Titre (Volume used)	11.4	11.3	11.4	11.0

For complete reaction, $20 \mathrm{~cm}^{3}$ of EF required $11.23 \mathrm{~cm}^{3}$ of GH

Question (a):

To find the molarity in a titration question, we use $\mathrm{M}_{\mathrm{A}} \mathrm{V}_{\mathrm{A}}$:

$$
\frac{M_{A} V_{A}}{n_{A}}=\frac{M_{B} V_{B}}{n_{B}}
$$

Let $\mathrm{A}=$ oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ and $\mathrm{B}=$ potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$. We need to find M_{A}. Making M_{A} the subject of the equation:

$$
M_{A}=\frac{M_{B} V_{B} n_{A}}{n_{B} V_{A}}
$$

Write down what we know. $\mathrm{M}_{\mathrm{B}}=0.02$ (molarity of potassium permanganate), $V_{B}=11.23 \mathrm{~cm}^{3}$ (volume added from burette), and $V_{A}=20 \mathrm{~cm}^{3}$ (volume of pipette). To find the mole ratio, we look at the balanced chemical equation
for the reaction between KMnO_{4} and $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$. Two moles of permanganate $\left(\mathrm{MnO}_{4}^{-}\right)$react with five moles of oxalate ion $\left(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right)$, so $\mathrm{n}_{A}=5$ and $\mathrm{n}_{B}=2$. Substituting these values into the equation, we find $M_{A}=0.028 \mathrm{M}$. So the molarity of oxalic acid was $\mathbf{0 . 0 2 8} \mathbf{~ M}$.

Question (b):

The question does not specify whether you should calculate the gram concentration of hydrated or anhydrous oxalic acid, so we will find both. To find gram concentration, multiply the molarity times the molar mass. The molar mass of hydrated oxalic acid is $126 \mathrm{~g} / \mathrm{mol}$, while anhydrous oxalic acid has a molar mass $90 \mathrm{~g} / \mathrm{mol}$.

The gram concentration of hydrated is thus $0.028 \mathrm{~mol} / \mathrm{dm}^{3} \times 126 \mathrm{~g} / \mathrm{mol}$ $=3.53 \mathrm{~g} / \mathrm{dm}^{3}$. To convert to $\mathrm{g} / \mathrm{cm}^{3}$, we can use cross multiplication (remember that $1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3}$):

$$
\frac{1000 \mathrm{~cm}^{3}}{1 \mathrm{~cm}^{3}}=\frac{3.53 \mathrm{~g}}{x}
$$

We find $\mathrm{x}=\mathbf{0 . 0 0 3 5 3} \mathbf{g} / \mathbf{c m}^{\mathbf{3}}$. This is the gram concentration of hydrated oxalic acid.

The gram concentration of anhydrous oxalic acid is $0.028 \mathrm{~mol} / \mathrm{dm}^{3} \times 90$
 gram concentration of anhydrous oxalic acid.

Question (c):

To find the percentage purity of manganese dioxide $\left(\mathrm{MnO}_{2}\right)$, first consider the equation for percentage purity:

$$
\% \text { Purity }=\frac{\text { gram concentration pure }}{\text { gram concentration impure }} \times 100 \%
$$

To find the gram concentration of impure MnO_{2}, we take the mass of impure MnO_{2} divided by the volume in $\mathrm{dm}^{3}: 1 \mathrm{~g} / 0.25 \mathrm{dm}^{3}=4 \mathrm{~g} / \mathrm{dm}^{3}$.

How can we find the concentration of pure MnO_{2} ? We know that MnO_{2} reacts with $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ in the following reaction:

$$
\mathrm{MnO}_{2}+2 \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4} \cdot \mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2} \uparrow
$$

The question tells us that EF contains " 2.2 g of oxalic acid crystals" made up in $250 \mathrm{~cm}^{3}$ of solution.
We can convert this into molarity by first finding the number of moles. $\mathrm{n}=$ m / M_{r}, so $n=2.2 / 126=$ 0.0175 mol . To find molarity, divide the number of moles by the volume in dm^{3}. $0.0175 \mathrm{~mol} / 0.25 \mathrm{dm}^{3}=0.07 \mathrm{M}$. So initially, solution EF was prepared so that the molarity of oxalic acid was 0.07 M , but we know from question (b) that the molarity obtained in the titration is only 0.028 M . What has caused the change?

The molarity of oxalic acid decreases because the oxalic acid reacts with MnO_{2} in the reaction above, which causes the molarity of oxalic acid to decrease. In the reaction between MnO_{2} and $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$, the oxalic acid is in excess; therefore the MnO_{2} is finished (has a molarity of 0) when the reaction is complete, and the oxalic acid which remains has a molarity of 0.028 M .

We can construct a table showing how the molarities of the different reactants change in the reaction. Remember, our goal is to find the amount of pure MnO_{2} present initially. The amount of pure MnO_{2} will be the amount of MnO_{2} that reacted with the oxalic acid and caused its molarity to decrease from 0.07 M to 0.028 M . Let A be the initial molarity of MnO_{2}. We know from our calculation that the initial molarity of $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$ was 0.07 M .

$\mathrm{MnO}_{2}+2 \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4} \cdot \mathrm{Mn}^{2+}+2$		
$\mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2} \uparrow$		
Initial	A	0.07
Change	$-x$	$-2 x$
Final	$\mathrm{A}-\mathrm{x}$	$0.07-2 \mathrm{x}$

But we know from the titration that the final molarity of oxalic acid is 0.028 M . Therefore, $0.07-2 x=$
0.028. So $x=0.021$. We also know that the MnO_{2} is finished at the end of the reaction, so the final molarity of MnO_{2} is 0 . Therefore, $\mathrm{A}-\mathrm{x}=0$. If $\mathrm{x}=0.021$, then $\mathrm{A}=0.021$. Thus, the initial molarity of (pure) MnO_{2} was 0.021 M .

To convert this into gram concentration, we multiply molarity by the molar mass. The molar mass of MnO_{2} is $87 \mathrm{~g} / \mathrm{mol}$. $0.021 \mathrm{~mol} / \mathrm{dm}^{3} \times 87 \mathrm{~g} / \mathrm{mol}$ $=1.83 \mathrm{~g} / \mathrm{dm}^{3}$. This is the gram concentration of pure MnO_{2}.

The percentage purity is thus:

$$
\frac{1.83 \mathrm{~g} / \mathrm{dm}^{3}}{4 \mathrm{~g} / \mathrm{dm}^{3}} \times 100 \%=45.8 \%
$$

The MnO 2 was $\mathbf{4 5 . 8 \%}$ pure.

Answers to Question 10 -- NECTA 1990

Here is the complete table of results:

Temperature $\mathrm{T} /{ }^{\circ} \mathrm{C}$	Temperature T / K	Time of Reaction $(\mathrm{t} / \mathrm{sec})$	$1 / \mathrm{T}\left(\mathrm{K}^{-1}\right)$	$\log _{10} 1 / \mathrm{t}$ $/ \mathrm{sec}-1$
$50^{\circ} \mathrm{C}$	323	346.12	0.003096	-2.53923

$60^{\circ} \mathrm{C}$	333	184.72	0.003003	-2.26651
$70^{\circ} \mathrm{C}$	343	92.23	0.002915	-1.96483
$80^{\circ} \mathrm{C}$	353	46.38	0.002832	-1.66633

Before beginning to answer the questions to a practical, it is always important to understand what is happening in the practical. In this practical, for example, what is it that is causing the white precipitate to form that eventually covers the mark on the piece of paper? If you look at the equation, you see:

$$
\mathrm{S}_{2} \mathrm{O}_{3}^{2-}+2 \mathrm{H}_{2} \mathrm{O}^{+} \cdot 3 \mathrm{H}_{2} \mathrm{O}+\mathrm{S} \downarrow+\mathrm{SO}_{2} \uparrow
$$

One of the products of this reaction is sulphur, which is formed as a precipitate. Precipitates are insoluble, and when they come out of the solution they cause the solution to become cloudy, or opaque. When enough precipitate has formed, the mark underneath the beaker is no longer visible. Thus, in this practical you are measuring the time it takes for enough precipitate to form in order to cover the mark on the paper beneath the beaker.

Question (i):

The graph of $\log _{10}(1 /$ time $)$ against $1 /$ Temperature is shown below:

Question (ii):

Your points should form a straight line. The equation of the line has been calculated by the computer. The graph shows the equation of the line is $y=-$ $3326.3 x+7.7426$. This means the slope, $m=-3326.3$, while the y-intercept, c $=7.7426$.

Question (iii):

In order to answer this question, we must first translate the Arrhenius Equation, $k=A e^{-E / R T}$, into a form that can be compared to the equation of a straight line, $y=m x+c$. k is the rate constant, A is the Arrhenius Constant, E is activation energy, R is the universal gas constant $\left(8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$, and T is temperature in Kelvin.

We begin by taking the log of both sides:

$$
\log k=\log A e^{\frac{-E}{R T}}
$$

Separate the right-hand side:

$$
\log k=\log A+\log e^{\frac{-E}{R T}}
$$

Bringing the exponent in front of the log:

$$
\log k=\log A-\frac{E}{R T} \log e
$$

e is a constant with value $e=2.718 . R$ also is a constant, with $R=8.31 \mathrm{~J}$ $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$. If we substitute both these values into the equation, we find:

$$
\log k=\log A-0.052 E\left(\frac{1}{T}\right)
$$

Rearranging terms, we get:

$$
\log k=-0.052 E\left(\frac{1}{T}\right)+\log A
$$

This equation has the same form as the equation of a straight line, $y=$ $m x+c$. Compare the two equations:

$$
\begin{aligned}
\log k & =-0.052 E\left(\frac{1}{T}\right)+\log A \\
y & =m x+c
\end{aligned}
$$

We see that if we set $y=\log k$ and $x=1 / T$, then $m=-0.052 E$ and $c=\log A$. If you draw a graph with log k on the y-axis, and $1 / T$ on the x-axis, then the slope of the line, $m=-0.052 E$ and the y-intercept, $c=\log A$. The units for E will be $\mathrm{J} / \mathrm{mol}$ and A will be unitless. The rate constant, k, is directly proportional to $1 /$ time. Therefore, instead of using log k on the y-axis it is also possible to use log (1/time). That is what we have done in this question. The resulting graph has the equation $y=-3326.3 x+7.7426$.
Now we can find the value of E and A. We will begin with E. We see in the relation above that $m=-0.052 E$. Making E the subject, we find:

$$
E=\frac{m}{-0.052}
$$

Substituting $\mathrm{m}=-3326.3$, we find $\mathrm{E}=63,967 \mathrm{~J} / \mathrm{mol}$. Converting into $\mathrm{KJ} / \mathrm{mol}, \mathbf{E}$ $=63.967 \mathrm{KJ} / \mathrm{mol}$. Now we can find A. We know from the relation above that $\mathrm{c}=\log \mathrm{A}$. To make A the subject, we take the antilog of $\mathrm{c}: \mathrm{A}=10^{\circ}$. Substituting $c=7.7426$, we find $\mathbf{A}=\mathbf{5 . 5} \times \mathbf{1 0}^{\mathbf{7}}$.

Note:

It is also possible to construct the graph using natural logarithms instead of base-10 logarithms. You would place $\ln k$ (or \ln (/time)) on the y axis and $1 / T e m p$ on the x-axis. If you choose to draw this graph, the slope, m $=-E / R$ and the y-intercept, $c=\ln A$. The value of R is $8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$.

Answers to Question 11 -- NECTA 2000

The complete table of results is given below:

Temp	Time	T	$1 / \mathrm{T}$	$\log \mathrm{t}$
50	37.1	323	0.003096	1.569374
60	14.2	333	0.003003	1.152288
70	6	343	0.002915	0.778151
80	3	353	0.002833	0.477121
90	1.8	363	0.002755	0.255273

Question (a):

The ionic half equation for MnO_{4}^{-}is:

$$
\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \cdot \mathrm{Mn}^{2+}+
$$

$4 \mathrm{H}_{2} \mathrm{O}$ For $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ the half equation is:

$$
\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \cdot 2 \mathrm{CO}_{2}+2 \mathrm{e}^{-}
$$

Adding them together, we find:

$$
2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \cdot 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{CO}_{2}
$$

Manganese is reduced from a +7 state to a +2 state, while carbon is oxidized from $a+3$ state to $a+4$ state. The reduction of Manganese from +7 to +2 is what causes the solution to go from purple to colourless when the reaction is complete.

Question (b):

The graph of $\log t(\mathrm{sec})$ against $1 / \mathrm{T}\left(\mathrm{K}^{-1}\right)$ is shown below:

Note that log time must be on the y-axis, while $1 / T e m p e r a t u r e ~ m u s t ~ b e ~ o n ~$ the x-axis. The points form a straight line. The equation of the line formed by the points is given on the graph: $y=3888.6 x-10.51$. The slope of the line, $m=3888.6$, while the y-intercept, $c=-10.51$. There are a few things to remember about plotting your graph and drawing your line. First, when you draw your line, try to have the line come as close as possible to all of the points. It is not necessary for the line to pass through any of the points. In general, you want to have an equal number of points above the line as below the line. In the graph above, for example, the line passes through one point, above two points, and below two other points. If there is one point that does not fit the trend formed by the other points, it is possible that you have bad data for that one point, and that one point can be ignored. A large amount of human error is involved in drawing this graph, so a range of answers are expected. The slope of the line, for example, could range between 3700 and 4200; all of those answers would be correct.

Question (c):

The question tells us that the slope of the graph is equal to 0.052 Ea mol KJ^{-1} (Note: the units should be $\mathrm{mol} \mathrm{J}^{-1}$, not $\mathrm{mol} \mathrm{KJ}^{-1}$). For the derivation of this relationship, see the answers for Question 10. The reason $m=0.052$ Ea and not $m=-0.052 \mathrm{Ea}$, as in the previous question, is because the graph for this question has log time on the y-axis, while in the previous question it was log (1/time). In mathematical terms:

$$
m=0.052 x E_{a}
$$

Making activation energy the subject:

$$
E_{a}=\frac{m}{0.052}
$$

The answer will have units of $\mathrm{J} / \mathrm{mol}$. From the graph, we know $\mathrm{m}=3888.6$. Therefore, $\mathrm{E}_{\mathrm{a}}=3888.6 / 0.052=\mathbf{7 4 , 7 8 0 . 7 6 ~ J} / \mathbf{m o l}$.

Answers to Question 12 -- NECTA 1992

Here is the incomplete table of results:

Time (Minutes) T	Vol. used		
5	12.2		$\left(\begin{array}{l}\text { Conc } \\ \text { n } \\ (\mathrm{M})\end{array}\right.$
10	11.1		1/Concn of Iodine Iodine $(1 / \mathrm{M})$
15	10.3		
20	9		
25	7.9		
30	6.8		

Question (a):
How were the concentrations of Iodine calculated? We need to use the balanced chemical equation between $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ and I_{2}, along with $\mathrm{M}_{\mathrm{A}} \mathrm{V}_{\mathrm{A}}$, to calculate the concentration (in $\mathrm{mol} / \mathrm{dm}^{3}$) of Iodine, I_{2}. $\mathrm{M}_{\mathrm{A}} \mathrm{V}_{\mathrm{A}}$ tells us:

$$
\frac{M_{A} V_{A}}{n_{A}}=\frac{M_{B} V_{B}}{n_{B}}
$$

Let $A=I_{2}$ and $B=S_{2} O_{3}{ }^{2-}$. Making M_{A} the subject:

$$
M_{A}=\frac{M_{B} V_{B} n_{A}}{n_{B} V_{A}}
$$

Write what you know. We will start with the data at 5 minutes. $\mathrm{M}_{\mathrm{B}}=0.01 \mathrm{M}$ (given in the question), $\mathrm{V}_{\mathrm{B}}=12.2 \mathrm{~cm}^{3}$ (volume of sodium thiosulphate added from the burette for the first titration at five minutes), $\mathrm{V}_{\mathrm{A}}=10 \mathrm{~cm}^{3}$ (the volume of the pipette used to transfer the reaction mixture to the conical flask). From the balanced equation, $\mathrm{n}_{\mathrm{A}}=1$ and $\mathrm{n}_{\mathrm{B}}=2$. Substituting these values into the equation, we find $\mathrm{M}_{\mathrm{A}}=0.0061 \mathrm{M}$. This is the concentration (in $\mathrm{mol} / \mathrm{dm}^{3}$) of Iodine in the first titration, which was done after 5 minutes.

You must repeat this calculation for each titration: at 10 minutes, 15 minutes, and so on until 30 minutes. The only thing that will change will be V_{B}, the volume of sodium thiosulphate. When you finish, your results should be the same as those shown in the table below:

Time (Minutes) T	$\begin{aligned} & \text { Vol. Of } \mathrm{NN} \\ & \text { used } \end{aligned}$	Conc ${ }^{\text {n }}$ of Iodine (M)	1/Concn of Iodine (1/M)
5	12.2	0.0061	163.9344262
10	11.1	0.00555	180.1801802
15	10.3	0.00515	194.1747573
20	9	0.0045	222.2222222
25	7.9	0.00395	253.164557
30	6.8	0.0034	294.1176471

Question (b):
The two graphs are shown below. The first graph shows time on the x axis in units of minutes and Concentration of Iodine on the y-axis, in units $\mathrm{mol} / \mathrm{dm}^{3}$:

This graph shows a straight line with a negative slope.
The next graph shows a plot of time on the x-axis in units of minutes, and the y-axis is $1 / C o n c e n t r a t i o n ~ o f ~ I o d i n e, ~ u n i t s ~ o f ~ i n v e r s e ~ m o l a r i t y ~$ ($\mathrm{dm}^{3} / \mathrm{mol}$):

This graph shows a curve, not a straight line.

Question (c):

To determine the order of reaction with respect of Iodine, we must examine the graphs. Here are some very important rules for the graphs drawn in chemical kinetics:
(i) If you plot a graph of time (y-axis) against concentration (x-axis) and the graph shows a straight line, the reaction is 0 -order.
(ii) If you plot a graph of time (y-axis) against log concentration (x axis) and the graph shows a straight line, then the reaction is $1^{\text {st }}$-order.
(iii) If you plot a graph of time (y-axis) against inverse concentration (x-axis) and the graph shows a straight line, then the reaction is $2^{\text {nd }}$-order.

Make sure to memorize these relationships described above!

To draw the above graphs, note that your choice of axes will not affect the shape of the graph. For a 0-order reaction, for example, you can plot a graph of time (y-axis) against concentration (xaxis), or concentration (y-axis) against time (x-axis). Both graphs would give a straight line and confirm that the reaction is 0 -order.

What do our two graphs show us? We have a graph of time (x-axis) against concentration (yaxis) that shows a straight line with a negative slope. We also have a graph of time (x-axis) against inverse concentration (y-axis), which shows a parabolic curve. Because the first graph shows a straight line, we know that the reaction is $\mathbf{0}$-order with respect to Iodine.

Question (d):

The purpose of $\mathrm{MM}, \mathrm{NaHCO}_{3}$, is to stop the reaction by reacting with H^{+}and thus removing the acidic condition. The reaction between Iodine and
propanone requires acidic conditions in order to proceed. If the acid is removed, the reaction stops. We want to stop the reaction because we want to know the concentration of Iodine at an exact time (5 minutes or 10 minutes or so on). If we do not stop the reaction, our data will not be very accurate, since the reaction between Iodine and propanone will continue, even as we are titrating the Iodine against sodium thiosulphate.

Answers to Question 13 -- NECTA 1999

The complete results tables are shown below:

Experiment	Sodium Thiosulphate $\left(\mathrm{cm}^{3}\right)$	Water $\left(\mathrm{cm}^{3}\right)$	0.1 M HCl $\left(\mathrm{cm}^{3}\right)$	Time (sec)
A	2	8	10	699
B	4	6	10	206
C	6	4	10	124
D	8	2	10	86
E	10	0	10	57

Sodium Thiosulphate $\left(\mathrm{cm}^{3}\right)$	Time (t) Sec	$1 /$ Time $(1 / \mathrm{t})=$ Rate Sec^{-1}
2	699	0.00143
4	206	0.00485
6	124	0.00806
8	86	0.01163
10	57	0.01754

Question a (i):

The graph of $1 / \mathrm{t}$ (vertical axis) against volume of sodium thiosulphate is shown below
\square

Question a (ii):

To determine the order of reaction from this graph, use the figure below:

If you plot rate (y-axis) against concentration (x-axis), there are three possible results:
(i) A horizontal line shows that the reaction is 0 -order with respect to whichever reactant you are studying
(ii) A straight line with a positive slope shows that the reaction is firstorder with respect to whichever reactant you are studying
(iii) A parabolic curve shows that the reaction is $2^{\text {nd }}$-order with respect to whichever reactant you are studying.

Note that this is only true for graphs of rate against concentration! If you plot a graph of concentration against time, these rules are not true. See Question 12 for how to interpret graphs of concentration against time.

The graph we have plotted in this question is a graph of 1/time against volume of sodium thiosulphate. 1/time is directly proportional to rate, however, and we are told that the volume of sodium thiosulphate is directly proportional to its concentration. The graph we have drawn can therefore be interpreted as a graph of rate against concentration.

Which of the three curves does our graph most closely resemble? Certainly not 0-order.
Differentiating between $1^{\text {st }}$ and $2^{\text {nd }}$-order can be a little difficult. We see that the first four points form a straight line, but the final point deviates from this line and gives the appearance of a parabolic curve.
So which will it be?
Because the first four lines shows a straight line, we will assume that there has been an error in the fifth point. The line should be straight, suggesting a $1^{\text {st }}$-order reaction. If the reaction were truly a $2^{\text {nd }}$-order reaction, we would expect to see all of the points forming a parabolic curve, not only the final point. Because the first four points show a straight line that only the final point deviates from, we say that the graph shows a straight line, indicating a $1^{\text {stt-order reaction. }}$

In general, if your graph shows a general trend that only one point deviates from, it is okay to assume that there is some error in that point and ignore it. The reason we use five points is so that if there is an error in one, we will have four others to show us the correct trend.

Question (b):

The precipitate was caused by the production of solid sulphur, which is insoluble and thus comes out of solution as a precipitate.

Question (c):

The reaction between the acid and sodium thiosulphate is shown below:

$$
2 \mathrm{H}^{+}+\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-} \cdot \mathrm{S} \downarrow+\mathrm{SO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}
$$

The complete table of results is shown below:

Total volume of EE added $\left(\mathrm{cm}^{3}\right)$	Time, t , at which dark- blur colour appears (sec)	Total calculated volume of solution FF which has reacted (x $\left.\mathrm{cm}^{3}\right)$	$(\mathrm{a}-\mathrm{x})$, where a initial volume of FF in the mixture $\left(\mathrm{cm}^{3}\right)$	log (a-x)
2.50	148	1.25	8.75	
5.00	309	2.50	7.50	0.942008
7.50	509	3.75	6.25	0.875061
10.00	768	5.00	5.00	0.79588
12.50	1168	6.25	3.75	0.69897
15.00	1747	7.50	2.50	0.574031

How did we determine the total calculated volume of $\mathrm{FF}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ that had reacted? First note that the $\mathrm{H}_{2} \mathrm{O}_{2}$ and solution $\mathrm{EE}\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)$ have the same molarity, 0.025 M . This means that equal volumes of the two solutions have equal number of moles, and that the volumes are directly proportional to the number of moles. $10 \mathrm{~cm}^{3}$ of the $\mathrm{H}_{2} \mathrm{O}_{2}$ solution have the same number of moles of solute as $10 \mathrm{~cm}^{3}$ of the $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution.

Now consider the mole ratio between $\mathrm{H}_{2} \mathrm{O}_{2}$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. There is a problem: they are not in the same reaction. How can we find the mole ratio? We add the two equations together so that I_{2} cancels. This will show us the mole ratio between $\mathrm{H}_{2} \mathrm{O}_{2}$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The two reactions are:

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{I}^{-}+2 \mathrm{H}^{+} \cdot 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2} \\
& \mathrm{I} 2+2 \mathrm{~S} 2 \mathrm{O} 32-\cdot 2 \mathrm{I}-+\mathrm{S} 4 \mathrm{O} 22-
\end{aligned}
$$

Now we add these equations together in such a way that I_{2} cancels. We see that the first reaction has one I_{2} on the product side, while the second equation has one I_{2} on the reactant side. This means we do not need to multiply either equation by a constant, and can add them together as they are:

$$
\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{I}^{-}+2 \mathrm{H}^{+}+\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-} \cdot 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}+2 \mathrm{I}^{-}+
$$

$\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$ Cancelling the compounds that appear on both sides:

$$
\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \cdot 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}
$$

From this equation we can see that the mole ratio between $\mathrm{H}_{2} \mathrm{O}_{2}: \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ is 1:2.
In the table, the first column tells us that $2.50 \mathrm{~cm}^{2}$ of solution $\mathrm{EE}\left(\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}\right.$), has been added. This will react with what volume of solution FF $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$? Because the volumes are directly proportional to the number of moles, and we know the mole ratio, we can use cross multiplication:

$$
\frac{2.5 \mathrm{~cm}^{3} \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}}{2 \mathrm{~mol} \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}}=\frac{x \mathrm{~cm}^{3} \mathrm{H}_{2} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{2}}
$$

So $x=1.25 \mathrm{~cm}^{3} \mathrm{H}_{2} \mathrm{O}_{2}$. In the first row of the table, the total volume of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ added was $2.50 \mathrm{~cm}^{3}$, and this will react with $1.25 \mathrm{~cm}^{3}$ of $\mathrm{H}_{2} \mathrm{O}_{2}$. We can use this same procedure to calculate the volume of $\mathrm{H}_{2} \mathrm{O}_{2}$ which has reacted in the following rows of the table, except instead of $2.5 \mathrm{~cm} 3 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}$ you will use 5 $\mathrm{cm}^{3}, 7.50 \mathrm{~cm}^{3}$, and so on. When you have finished, the third column of your table should be identical to the one shown above.

To calculate the values for the fourth column, $a-x$, remember that the initial volume of $\mathrm{FF}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ added was $10 \mathrm{~cm}^{3}$. For the first row, this gives 10 $\mathrm{cm}^{3}-1.25 \mathrm{~cm}^{3}=8.75 \mathrm{~cm}^{3}$. Use this same procedure for the rest of the column.

Question (a):

The graph of (a-x) against time, t, is shown below:

Remember that volume is directly proportional to number of moles, and is thus also directly proportional to concentration. This graph can therefore be interpreted as a graph of concentration (yaxis) against time (x axis).

Question (b) (i):

The graph of $\log (a-x)$ against time, t, is shown below:

As with the previous graph, volume is directly proportional to concentration, so this graph can be interpreted as a graph of log concentration (y-axis) against time (x-axis).

(ii):

The equation of the line formed by the points is shown on the graph: $\mathrm{y}=-$ $0.0003 x+0.9759$. This means the slope, $m=-.0003$.

Question (c):

To answer this question, refer back to Question 12 and the explanation about how to interpret graphs of concentration against time (or time against concentration).

We know that if a graph of concentration against time gives a straight line, the reaction is Oorder. If a graph of log concentration against time gives a straight line, the reaction is $1^{\text {st }}$-order. Here we have both of these graphs: Which one shows us a straight line?

The first graph (concentration against time) shows an exponential curve, not a straight line. Note how the curve begins to slope upwards, like the left-hand side of the graph for $y=x^{2}$, as you move from right to left. This line is not straight. Because this line is not straight, we know the reaction is not 0 -order.

The second graph (log concentration against time) shows a line that is relatively straight.
True, it is not perfectly straight, but it is inevitable that data obtained in practicals will contain some error. Because the graph of log concentration against time shows a straight line, this reaction is $\mathbf{1}^{\text {st }}$ order with respect to Hydrogen peroxide.

Note that the exam essentially provides you with the answer. It asks you to find the slope of the second graph, but not the slope of the first graph. This tells you that the second graph must contain a straight line (only straight lines have a constant slope). The fact that you can find the slope of the second graph tells you that the second graph will be a straight line. You cannot find the slope of the line in the first graph because its slope is not constant; it is always changing.

Answers to Question 15 -- NECTA 2006

(a) Results

(i) The volume of the pipette used was $20 \mathrm{~cm}^{3}$.
(ii) The volume of W_{1} used is $20.9 \mathrm{~cm}^{3}$.
(iii) The room temperature is $27^{\circ} \mathrm{C}$
(b) Results:
(i) Volume of the aqueous layer taken was $20 \mathrm{~cm}^{3}$.
(ii) Volume of W_{1} used was $16 \mathrm{~cm}^{3}$

Before continuing with the questions, it is important to understand what is happening in this practical. The two immiscible solvents are water and diethyl ether (the organic layer). The solute that it distributed between the two layers is succinic acid. Initially, all of the succinic acid is in the water layer. You know this because, at the beginning, you start with an (aqueous) solution of succinic acid: This is succinic acid dissolved in water. At the beginning, the diethyl ether is pure: There is nothing dissolved in it.

When you mix the two layers in the separating funnel, you cause a portion of the succinic acid to be extracted into the ether layer, while the rest remains in the water layer. Your goal in this practical is to determine how much succinic acid has gone into the ether layer (the concentration of succinic acid in the ether) and how much remains in the water layer (the concentration of succinic acid in the water layer). With this information, it will be possible to calculate the value of the partition coefficient, K_{d}.

Question (c):

What is the chemical reaction taking place in procedure 1.(iii)?
Procedure 1.(iii) says: "Titrate very carefully solution W_{2} against W_{1} until there
is a colour change." Solution W2 is the aqueous solution of succinic acid before being mixed with ether, while W 1 is NaOH . This titration allows you to calculate the concentration of succinic acid in water before the extraction with ether. Succinic acid is a di-carboxylic acid, which means that it has two acidic hydrogens. The balanced equation is:

$$
2 \mathrm{NaOH}+\mathrm{HOOC}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH} \cdot \mathrm{NaOOC}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COONa}+2 \mathrm{H}_{2} \mathrm{O}
$$

Question (d):

The initial concentration of W2 (succinic acid) in water is the concentration of succinic acid in water before mixing the water with ether. We can use the titration performed in Procedure 1 to find this concentration. We will use $M_{A} V_{A}$, and our subject will be M_{A}, since we are calculating the molarity of the succinic acid.

$$
M_{A}=\frac{M_{B} V_{B} n_{A}}{n_{B} V_{A}}
$$

$\mathrm{M}_{\mathrm{B}}=0.1 \mathrm{M}, \mathrm{V}_{\mathrm{B}}=20.9 \mathrm{~cm}^{3}$ (the volume of NaOH added from the burette), and $V_{A}=20 \mathrm{~cm}^{3}$ (the volume of acid pipetted into the conical flask). Note that the acid is added from the pipette and the base from the burette: you need to check to see where the acid and base are added from, since the pipette does not always hold the base and the burette does not always hold the acid. $\mathrm{n}_{\mathrm{A}}=$ 1 and $n_{B}=2$.
Substituting these values into the equation above, we find $M_{A}=0.05225 \mathrm{M}$, or approximately $\mathbf{M}_{\mathbf{A}}=\mathbf{0 . 0 5 2} \mathrm{M}$. We can convert this into gram concentration by multiplying the molarity by the molar mass. The molar mass of succinic acid is $118 \mathrm{~g} / \mathrm{mol}$, so so the gram concentration is $6.136 \mathrm{~g} / \mathrm{dm}^{3}$.

The final concentration of W_{2} in the aqueous layer is the concentration of succinic acid in the aqueous layer after mixing with the ether. A portion of the succinic acid has been extracted into the ether layer, so we expect the concentration of succinic acid in the water to decrease.

We can use the titration performed in Procedure 2 to find the concentration of succinic acid in the aqueous layer after the extraction with ether. We will again use $M_{A} V_{A}$ with M_{A} as our subject. $M_{B}=0.1 M, V_{B}=16$ cm^{3} (the volume of NaOH added from the burette in Procedure 2), and $\mathrm{V}_{\mathrm{A}}=$ $20 \mathrm{~cm}^{3}$ (the volume of the pipette). $\mathrm{n}_{\mathrm{A}}=1$ and $\mathrm{n}_{B}=2$. Substituting these values into $M_{A} V_{A}$, we find $M_{A}=\mathbf{0 . 0 4} \mathbf{M}$. Converting this to gram concentration gives $\mathbf{4 . 7 2} \mathbf{~ g} / \mathbf{d m}^{3}$.

Question (e):

The initial concentration of succinic acid in water was $6.136 \mathrm{~g} / \mathrm{dm}^{3}$, while the final concentration was $4.72 \mathrm{~g} / \mathrm{dm}^{3}$. What has caused the
concentration to decrease? During the extraction, some of the succinic acid has been extracted from the water into the ether, so the concentration of succinic acid in the water has decreased.

The concentration of succinic acid in the ether layer is the difference between the initial and final concentration of succinic acid in water, since this difference is the amount that has moved into ether. It can be calculated by subtracting the final concentration from the initial concentration. $6.136 \mathrm{~g} / \mathrm{dm}^{3}$ $-4.72 \mathrm{~g} / \mathrm{dm}^{3}=\mathbf{1 . 4 1 6} \mathbf{~ g} / \mathbf{d m}^{\mathbf{3}}$ is present in the ether layer after the extraction.

Question (f):

We now have all the information needed to find the partition coefficient. The concentration of succinic acid in water after the extraction is $4.72 \mathrm{~g} / \mathrm{dm}^{3}$. The concentration of succinic acid in ether after the extraction is $1.416 \mathrm{~g} / \mathrm{dm}^{3}$. Note that if we add $4.72 \mathrm{~g} / \mathrm{dm}^{3}+1.416 \mathrm{~g} / \mathrm{dm}^{3}=6.136 \mathrm{~g} / \mathrm{dm}^{3}$, the intitial concentration of succinic acid. The total concentration, or total amount, of succinic acid does not change; it just moves between the two solvents.

The question asks for the "partition coefficient of W_{2} between water and diethyl ether." Because water is the solvent mentioned first, the concentration succinic acid in water will be the numerator. Because ether is the solvent mentioned second, the concentration of succinic acid in ether will be the denominator:

$$
K_{d}=\frac{[\text { succinic acid }]_{\text {water }}}{[\text { succinic acid }]_{\text {eher }}}
$$

You can use either molarity or gram concentration in this equation: the value of K_{d} will be the same. We will use gram concentration:

$$
K_{d}=\frac{4.72 \frac{g}{d m^{3}}}{1.416 \frac{g}{d m^{3}}}=3.33
$$

So the value of $\mathbf{K}_{\mathbf{d}}=\mathbf{3 . 3 3}$.
The succinic acid is more soluble in the water than in the ether. Why do you think that is? Think of the principle like-dissolves-like: a polar solvent dissolves a polar solute well, while it does not dissolve a nonpolar solute well. Similarly, a nonpolar solvent dissolves a nonpolar solute well, but does not dissolve a polar solute well. Water is polar and ether is nonpolar. The solute, succinic acid, is polar. Therefore, the succinic acid is more soluble in the water, because both water and succinic acid are polar.

