THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATIONS

131/1

PHYSICS 1

(For Both School and Private Candidates)

Time: 3 Hours

Year: 2022

Instructions

- 1. This paper consists of sections A and B with a total of ten (10) questions.
- 2. Answer all questions in section A and two (2) questions from section B.
- 3. Section A carries seventy (70) marks and section B carries thirty (30) marks.
- 4. Mathematical tables and non-programmable calculators may be used.
- 5. Cellular phones and any unauthorised materials are **not** allowed in the examination room.
- 6. Write your Examination Number on every page of your answer booklet(s).
- 7. The following information may be useful:
 - (a) Acceleration due to gravity, $g = 9.8 \text{ m/s}^2$
 - (b) Gravitational constant, $G = 6.67 \times 10^{-11} \text{ Nm}^2 \text{kg}^{-2}$
 - (c) Mass of earth, $M_E = 6.0 \times 10^{24} \text{ kg}$
 - (d) Radius of earth, $R_E = 6.4 \times 10^6 \text{ m}$
 - (e) Distance of the moon from the earth, $r = 3.8 \times 10^5 \text{ km}$
 - (f) Density of water at $25^{\circ}C = 1000 \text{ kgm}^{-3}$
 - (g) Specific heat capacity of water is 4200 Jkg⁻¹K⁻¹
 - (h) Charge of an electron, $e = 1.6 \times 10^{-19} \text{ C}$
 - (i) Coefficient of linear expansion of steel = $1.7 \times 10^{-5} \text{ K}^{-1}$
 - (j) Coefficient of linear expansion of copper = $1.1 \times 10^{-5} \text{ K}^{-1}$
 - (k) Pie, $\pi = 3.14$.

SECTION A (70 Marks)

Answer all questions in this section.

- 1. (a) The period of oscillation of a simple pendulum is given by the relation; $T = 2\pi \sqrt{\frac{l}{g}}$.
 - (i) Deduce the formula of factional error in 'g'. (03 marks)
 - (ii) Which quantity in 1 (a) (i) should be measured most accurately? Give reason for your answer. (02 marks)
 - (b) Figure 1 shows a body of mass 20 kg and radius 0.2 m having a moment of inertia of 0.4 kgm² rolling down a slope of height 3.0 m. Calculate its speed at the foot of the slope.

Figure 1

- 2. (a) (i) Why bodies on the earth's surface do not move towards each other? Explain basing on Newton's law of universal gravitation. (03 marks)
 - (ii) Use the law in (a) (i) to derive Kepler's third law. (03 marks)
 - (b) Show that the moon would depart forever if its speed were increased by approximately 41% where by M_E and M_M are the mass of the earth and moon respectively. (04 marks)
- 3. (a) (i) Briefly explain the importance of energy interchange in simple harmonic motion. (03 marks)
 - (ii) What would happen when negative sign in the equation, $a = -\omega^2 y$ as applied in simple harmonic motion (S.H.M) is omitted? (02 marks)
 - (b) An object of mass 2 kg executes S.H.M with a frequency of 2 Hz and amplitude of 2.5 cm. Calculate its maximum velocity and maximum potential energy. (05 marks)
- 4. (a) (i) Why an aircraft twist its wings as it prepared to land? (03 marks)
 - (ii) What would be the effect on the horizontal range for a given projection of angle θ if its initial velocity is doubled? (03 marks)

(05 marks)

- Show that $\frac{H}{R} = \frac{1}{4} \tan \beta$, given that H, R and β are the maximum height, range and an angle above the horizontal respectively for a projectile fired from the ground level.

 (04 marks)
- 5. (a) (i) Why lake water at very cold regions does not freeze completely into ice even if the temperature on it is far below the freezing point? Explain with the aid of a relevant diagram. (04 marks)
 - (ii) What is the biological significance of the behavior observed in 5 (a) (i)?

(02 marks)

- (b) One litre of pure water at 25 °C is poured into an electric kettle of negligible heat capacity rated 2.5 kW. If the kettle is switched on, calculate the time taken to raise the temperature of water to 100 °C. (04 marks)
- 6. (a) An ideal gas of volume 0.05 m³ initially at 27 °C and pressure 1.0×10⁵ Pa, is heated at constant pressure until its volume increases to 0.06 m³. Calculate the external work done by the gas. (04 marks)
 - (b) If a steel rod is 5 cm longer than a copper rod and their difference in length is to be maintained constant at any temperature, find their actual lengths. (06 marks)
- 7. (a) (i) Identify two principles on which the wind turbine operates to generate electrical energy. (02 marks)
 - (ii) Why renewable energy sources are usually regarded as environmentally friendly? Explain giving two examples. (04 marks)
 - (b) (i) What is the influence of oxygen and carbon dioxide gases to plant growth? (02 marks)
 - (ii) Briefly explain the effect of rainfall on the renewal of soil air. (02 marks)

SECTION B (30 Marks)

Answer two (2) questions from this section.

- 8. (a) (i) How does a fuse protect electrical installations? (02 marks)
 - (ii) Why the bulbs in a house become dim when high power heater is connected to the main supply? (02 marks)
 - (b) (i) A current of 0.5 A passes through a light bulb rated 40 W. If the charge on electron is 1.6×10^{-19} C, calculate the number of electrons passed through the filament bulb. (02 marks)

acseerori

(ii) Figure 2 is a circuit diagram with resistors of 3 kΩ, 1 kΩ and 2 kΩ connected to a cell of 24 V. Use Kirchhoff's voltage law to determine the voltage between point 'a' and 'b'.
 (03 marks)

(c) Study the circuit diagram in Figure 3 and then answer the questions that follow:

Figure 3

Determine:

- (i) The value of E such that a current of 0.5 A exists in 8 Ω resistor with a sense from 'a' to 'b'. (04 marks)
- (ii) The potential difference $V_a = V_b$.

(02 marks)

9. (a) What is meant by a semiconductor based on energy band theory of solids?

(01 mark)

- (ii) Give three distinctions between intrinsic and extrinsic semiconductor. (03 marks)
- (b) (i) Which property of a semiconductor diode permits it to be used as a rectifier?

(03 marks)

- (ii) In a common base connection the emitter current $I_E = 1$ mA and collector current $I_C = 0.95$ mA. If this transistor is connected in common emitter with base current of 0.05 mA; calculate the collector current. (03 marks)
- (c) (i) Distinguish between breakdown voltage and knee voltage as applied to PN-junction.
 - (ii) Why the conductivity of intrinsic semiconductor increases with the increase in temperature while that of metals decreases? (03 marks)

- 10. (a) (i) Why the NAND (or NOR) gates are known as digital building blocks?
 (02 marks)
 - (ii) Draw the logic symbol and give the name of the gate obtained from the combination of the gates shown in Figure 4.

Figure 4

- (b) (i) Why the current gain in common base transistor amplifier is always less than one? (02 marks)
 - (ii) Identify three main properties of operational amplifier. (03 marks)
- (c) (i) Give two advantages of digital circuits over analog circuits. (02 marks)
 - (ii) With the aid of illustrative diagram, state the condition necessary for a transistor to behave as an open switch. (03 marks)

mount to intividual south and

TENTILL WILL

in the increase in