

AVR1606: XMEGA Internal RC Oscillator
Calibration

Features
• Adjustable RC frequency with +/-1% accuracy
• Support for all XMEGA™’s with tunable RC oscillator via JTAG interface
• Calibration using JTAGICE mkII and AVRONE for one time
• Tune RC oscillator at any operating voltage and temperature
• Firmware implementation for use during production programming

1 Introduction
This application note describes a fast and accurate method to calibrate the internal
RC oscillator. It offers an easily adaptable calibration firmware source code, which
can be used with any XMEGA with internal tunable RC oscillator and JTAG
interface. This firmware allows device calibration using the AVR® tools JTAGICE
mkII and AVRONE.

The internal RC oscillator frequency can be calibrated to within +/-1% of the
frequency specified in the datasheet for the XMEGA device. This feature offers
great flexibility and significant cost savings compared to using an external
oscillator.

The calibration performed in the Atmel factory is made at a fixed operating voltage
and temperature (typically 85°C, 3V). As the frequency of internal RC oscillators
are affected by both operating voltage and temperature, it may be desired to
perform a secondary calibration, which matches the specific application
environment. This secondary calibration can be performed to gain higher accuracy
than the standard calibration offers, to match a specific operating voltage or
temperature.

The calibration method described in this application note only takes a fraction of a
second longer than reading the factory calibration byte from the signature row and
writing it back to the to the device memory. Thus, the overall programming time is
almost unaffected when performing calibration in the programming step in
production.

In some systems it may be more beneficial to perform run-time calibration of the
oscillator. This may be desirable in applications that need an accurate system clock
over the entire temperature range and independent of operating voltage. In that
case a 32.768 kHz watch crystal may offer a reliable and cost efficient solution.
Automatic runtime calibration is covered by chapter 7 Runtime calibration

A Quick Start Guide is found at the end of this document.

8-bit
Microcontrollers

Application Note

Rev. 8277A-AVR-12/09

2 AVR1606
8277A-AVR-12/09

2 Theory of operation – the internal RC oscillators
In production the internal RC oscillators are mostly calibrated at 3V/85°C. Refer to
Oscillator Characteristics in the datasheet of the individual devices for information
about the operating voltage used during calibration. If a design’s need for accuracy is
+/-1% at other operating voltage and temperature beyond what can be offered by the
standard calibration in factory by Atmel, it is possible to perform a secondary
calibration of the RC oscillator. By doing this it is possible to obtain frequency
accuracy within +/-1 at any operating voltage and temperature. A secondary
calibration can thus be performed to improve or tailor the accuracy or frequency of the
oscillator.

2.1 Clock selection
The XMEGA System Clock source is selectable from software, and can be changed
during normal operation. Each oscillator option has a status flag that can be read from
software to check that the oscillator is ready. After reset the XMEGA starts up running
from the 2 MHz internal calibrated RC oscillator. An overview of the clock selection is
available in the datasheets.

2.2 Internal calibrated RC oscillator overview
There are three internal calibrated RC oscillators on XMEGA, ranging from 32.768
kHz RC oscillator to a 32 MHz factory calibrated RC oscillator with auto calibration
features. All calibrated oscillators can be used as main system clock.

The following sections provide an overview of the internal calibrated RC oscillators
available in the XMEGA microcontrollers.

2.2.1 Calibrated 32.768 kHz RC Oscillator

This RC oscillator provides an approximate 32.768 kHz clock. A factory-calibrated
value is written to the 32.768 kHz oscillator calibration register during reset to ensure
that the oscillator is running within its specification. The calibration register can also
be written from software for runtime calibration of the oscillator frequency. The
oscillator employs a built in prescaler providing both a 32.768 kHz output and a 1.024
kHz output.

2.2.2 Calibrated 2 MHz RC Oscillator

This RC oscillator provides an approximate 2 MHz clock. The oscillator employs a
Digital Frequency Looked Loop (DFLL) that can be enabled for automatic run-time
calibration of the oscillator. A factory-calibrated value is written to the 2 MHz DFLL
Calibration Register during reset to ensure that the oscillator is running within its
specification. The calibration register can also be written from software for manual
run-time calibration of the oscillator.

2.2.3 Calibrated 32 MHz RC Oscillator

This RC oscillator provides an approximate 32 MHz clock. The oscillator employs a
Digital Frequency Locked Loop (DFLL) that can be enabled for automatic run-time
calibration of the oscillator. A factory-calibrated value is written to the 32 MHz DFLL
Calibration Register during reset to ensure that the oscillator is running within its

 AVR1606

 3

8277A-AVR-12/09

specification. The calibration register can also be written from software for manual
run-time calibration of the oscillator.

2.3 Oscillator characteristics
The frequency of the internal 32.768 kHz RC oscillator is depending on the
temperature and operating voltage. An example of this dependency is seen in Figure
2-1, which shows the 1.024 kHz output frequency of the 32.768 kHz RC oscillator of
the ATxmega128A1. As seen from the figure, the frequency increases with increasing
temperature, and decreases slightly with increasing operating voltage. These
characteristics will vary from device to device. For details on a specific device refer to
its datasheet.

Figure 2-1. Internal 32.768 kHz oscillator Frequency vs. Temperature (1.024 kHz
output)

All XMEGA devices with tunable 32.768 kHz RC oscillators have an RC32KCAL
register for tuning the oscillator frequency. An increasing value in RC32KCAL will
result in an increase in frequency. This information is very relevant when searching
for the best calibration value to fit a given frequency.

The two built in Digital Frequency Locked Loops (DFLLs) in all XMEGA devices can
be used to improve the accuracy of the 2 MHz and 32 MHz internal oscillators. The
reference clock sources can be selected to be the internal 32.768 Hz RC oscillator or
an external 32.768 kHz watch crystal. That means the 2 MHz and 32 MHz internal
oscillators precision will be decided by the reference clock accuracy. When the DFLL
is enabled it will count each oscillator clock cycle, and for each reference clock edge,
the counter value is compared to the fixed ideal relationship between the reference
clock and the oscillator frequency. If the internal oscillator runs too fast or too slow,
the DFLL will decrement or increment the corresponding DFLL Calibration Register
value by one to adjust the oscillator frequency slightly. For details refer to the XMEGA
manual.

4 AVR1606
8277A-AVR-12/09

Knowing the fundamental characteristics of the RC oscillators, it is possible to make
an efficient calibration routine that calibrates the RC oscillator to a given frequency, at
any operating voltage and at any temperature with an accuracy of +/-1%.

2.4 Implementation of the calibration
This section is divided into a description of the calibration protocol and a description
of the firmware. The protocol can be adapted into any test or programming tool to
support calibration. The AVR tools JTAGICE mkII and AVRONE support the
implemented calibration protocol. The usage of these tools to calibrate a device is
described later.

The calibration support in JTAGICE mkII and AVRONE is at present only supported in
the command-line version of the tools. The calibration is supported for JTAGICE mkII
and AVRONE in AVR Studio® version 4.18 (or later). The newest release of AVR
Studio can be downloaded from www.atmel.com/avrstudio.

The calibration support for STK600 will be present in future version.

2.5 Calibration protocol
The protocol for calibration uses TDI and TDO on the JTAG interface so that that the
calibration can be used in production environment for a final product (or on PCB).

The basic concept is that the programmer generates the calibration clock (C-clock),
and the device uses this as a reference to calibrate its internal RC oscillator. When
the device has completed the calibration it signals “OK” to the programmer on the
TDO line.

In the protocol of calibration, the XMEGA device should enable pull-up resistor on the
TDI line, and the programmer (JTAGICE mkII and AVRONE) should enable pull-up
resistor on the TDO line. Unfortunately the programmer is in many cases behind level
converters, so the device sets the TDI line high also. This is done to ensure that noise
is unlikely to corrupt the calibration.

The programmer can use 5120 C-cycles (cycles on the C-clock) as time-out period,
as the calibration routine is guaranteed to be completed within this number of C-
cycles.

The calibration procedure runs through the following steps:

1. The programmer writes the calibration firmware into the device and possibly
enables the TDO pull-up, and releases the reset line. The JTAG disable bit in
MCUCSR is set. The calibration clock is applied on the TDI line. The frequency of
this is 32.768 kHz.

2. The device enables the internal pull-up on the TDI line, sets the TDO line high, and
starts listening for the calibration clock on TDI.

3. When the device detects the calibration clock a binary search is used to find an
RC32KCAL value that meets the criteria of 1% accuracy. If calibration fails the
TDO line is set low and program flow goes to step 6.

4. The calibration value is stored in EEPROM (skipped if calibration fails).
5. TDO line is toggled 8 times / 4 cycles by the device. The toggling of the TDO line is

performed on the falling edge of the clock on the TDI line (C-clock), but 5 to 10
CPU cycles delayed. In the case of failing calibration the TDO line is not toggled.

6. JTAG interface is re-enabled and the device goes into an infinite loop.

 AVR1606

 5

8277A-AVR-12/09

7. If the device does not have an EESAVE fuse, the programmer must read back the
calibration byte from EEPROM, for later restoring when the calibration firmware
has been erased from the Flash. If the device have an EESAVE fuse, this fuse can
be set so that erasing the Flash does not also erase the EEPROM.

Please note it is necessary to copy the calibration byte from EEPROM or
FLASH to the calibration register at run-time. A routine for this must therefore
be implemented in the final firmware.

2.6 The calibration firmware
The calibration code is written in C, for the AVR Studio 4.18 / IAR 5.20 (or later) with
the calibration package installed.

The root file refers to (includes) the following files:

1. The common calibration code “main.c”.
2. The driver of XMEGA event system code “event_system_driver.c”
3. The driver of XMEGA clock system code “clksys_driver.c”
4. The driver of XMEGA EEPROM code “eeprom_driver.c”
5. The driver of XMEGA timer/counter code “TC_driver.c”

2.6.1 Method for determining the oscillator frequency

The comparison between the Calibration clock (C-clock) and the internal RC oscillator
are performed using the 16-bit Timer/Counter C0 (TCC0). It is used since it is be
present in all devices that have tunable RC oscillator. The idea is to capture the
frequency of C-clock cycles using XMEGA event system and compare the frequency
to predefined limits. The C-frequency in the present implementation is given in the
interface specific include file. The method for determining the oscillator frequency is
described in the flowchart in Figure 2-2.

6 AVR1606
8277A-AVR-12/09

Figure 2-2. Flowchart of algorithm determining relationship between the C-clock and
the internal oscillator frequency

Start

Initialize Timer/
counter 0 and
event system

Step size =
0x80

Wait frequency
stable

Step size
== 1?

Capture
frequency <
std. value

Calibration
precision in 1%

Y

Increase
RC32KCAl

with stepsize

Decrease
RC32KCAl

with stepsize

Divide stepsize
by two

NY

Save value in
EEPROM

Send
Handshake

signal

Return

Y

N

Enable Auto
calibration

N

3 Calibrating with JTAGICE mkII or AVRONE
The source code of the calibration firmware and the batch file provided is made as an
example of how to use JTAGICE mkII or AVRONE to perform calibration. The
firmware needs few or no modifications to be used in other calibration systems.

3.1 Make the calibration firmware
To make the project in IAR EWAVR:

 AVR1606

 7

8277A-AVR-12/09

Add the .c files for the given example to your project. Select device type and enable
bit definitions in I/O include files, optimization low for debug target and high for
release, output format: ubrof8 for Debug and intel_extended for Release, select
Normal DLIB as library.

To make the project in WinAVR:

Add the .c files (and .S files where applicable) for the given example to your project.
Select device type, optimization low for debug target and high for release.

3.2 Using the command line tools
The calibration support in JTAGICE mkII and AVRONE is at present only supported in
the command-line version of the tools (AVR Studio 4.18 or later). The software
package that provides this support can be found at http://www.atmel.com/avr/. Please
install this package for calibration support.

The package includes a new firmware for the AVR tools, which is required to enable
calibration. The firmware upgrade is automatic when first connecting to the tool with
AVR Studio 4.18 (or later) or manual as described in the AVR Studio help.

Batch files are provided along with the source code. These batch files show how the
command line tools can be used to program the calibration code into the target
device, perform the calibration and hence reprogram the device with the final
firmware. The batch files are performing calibration of the ATxmega128A1 through
JTAGICE mkII and AVRONE respectively. Please study these batch files and the
AVR Studio integrated help to understand the use of JTAGICE mkII and AVRONE
command line tools. Table 3-1 includes a list of the new commands to the .exe files
that are related to the calibration operation.

Table 3-1. New oscillator calibration specific options in jtagice.exe
Command Description

-Z [addr] Read calibration byte from EEPROM memory. ‘addr’ is
byte address. The read operation is performed before
the “chip erase” is executed. Using ‘-S#’ will re-write the
value to flash or EEPROM after the chip erase.

-Y Perform the oscillator calibration sequence. This
command will override all other operations. The exe file
will return an errorlevel 1 if it does not get the
acknowledge signal from the target device.

4 Performance of the Calibration firmware
The code has been written with focus on efficiency: The entire calibration should be
performed fairly quickly. The performance therefore depends on the size of the
calibration firmware and the time it takes to complete the calibration.

The calibration routine is completed in less than 5120 calibration cycles. The shortest
duration is however dependent on how fast the binary search algorithm can find a
suitable RC32KCAL value, and the write time of the EEPROM. In the present
implementation, using JTAGICEII.exe or AVRONE.exe, the calibration itself is
completed in less than 1s.

8 AVR1606
8277A-AVR-12/09

5 Calibration Clock Accuracy
The accuracy of the calibration is highly dependent on the accuracy of the external
calibration clock. The calibration clock frequency generated by the AVR tools may
vary. It is therefore important to measure the exact frequency on the TDI pin on the
JTAG interface and change it into the main.c file. Since resonators are dependent on
both operating voltage and temperature, the calibration frequency should be
measured when these parameters equals the conditions during calibration.

6 Quick Start Guide to Calibration of the internal RC using AVR Studio
To get started using the calibration feature in one of the device already supported one
can follow steps below.

1. Download and unzip the source code for AVR1606 (any location can be used,
here called \AVR1606\).

2. Download and install AVR Studio 4.18 (or later) from http://www.atmel.com/avr/

3. Open AVR Studio, create a new AVR GCC project called “rc_calib”, and add root
source code file to the project.

4. Select a target device from AVR Studio <project> <configuration option>

5. Measure the frequency of the calibration clock with a frequency counter or an
oscilloscope. This signal can be found on the TDI pin on JTAG interface. Change
the line in the main.c file “#define CAL_REF_CLOCK_FREQ (xxxxx)” to
reflect the measure frequency.

6. Compile the project to generate the hex binary file that should be programmed
into the device.

7. Open the batch file corresponding to the tool, and edit the file to match the
desired device, by changing the –datxmega128a1 argument to –d[target device].

a) JTAGICE_mkII_rc_calib.bat for JTAGICE mkII with JTAG interface.
b) AVRONE_rc_calib.bat for AVRONE with JTAG interface.

8. Please note that the reset line must be available.

9. Change the fuse setting to the desired setting. Make sure that the watchdog
timer always on fuse is not set.

10. If the install path for AVR Studio differs from the one used in the batch file (the
standard in English windows® versions), please change the path to the
relevant .exe file.

11. For production calibration the @PAUSE command at successful calibration
should be removed.

12. Save the batch file.
13. Connect the JTAGICE mkII or AVRONE to the target board. Power the tool and

application. Make sure that the USB cable is attached between the tool and the
PC.

14. Open a command shell window (a DOS prompt), navigate to the directory
“\AVR1606\Batch file\”, and execute the batch file (JTAGICE_mkII_rc_calib.bat
or AVRONE_rc_calib.bat). Or simply just run the batch file from a file browser.

15. Wait a short while for the calibration to complete.

 AVR1606

 9

8277A-AVR-12/09

The batch file can also be modified to program a custom firmware rather than the
test.hex firmware after the calibration. Be aware that the new calibration value should
be loaded into the RC32KCAL, DFLLRC32M and DFLLRC2M register at runtime by
the firmware.

7 Runtime calibration using a 32.768 kHz reference clock
The XMEGA Clock System provides two Digital Frequency-locked Loops (DFLLs),
one for the 2 MHz RC oscillator and one for the 32 MHz RC oscillator. The DFLLs can
be configured individually to use either the internal 32.768 kHz RC oscillator or an
external 32.768 kHz watch crystal as a reference for the calibration process.

Once enabled, a DFLL provides continuous calibration of its oscillator based on the
clock reference. When entering sleep mode, the current state is frozen and the
calibration loop continues from where it stopped when exiting from sleep mode again.

If a DFLL is disabled, the current calibration value for the oscillator will remain in
effect until the DFLL is enabled again and the calibration process continues.

For more information please refer to the device datasheet and application note
AVR1003.

8277A-AVR-12/09

Disclaimer
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
http://www.atmel.com/

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR®, AVR® logo, AVR Studio® and others, are
the registered trademarks, XMEGA™ and others are trademarks of Atmel Corporation or its subsidiaries. Windows® is a registered trademark of
Microsoft® Corporation in U.S. and or other countries. Other terms and product names may be trademarks of others.

	1 Introduction
	2 Theory of operation – the internal RC oscillators
	2.1 Clock selection
	2.2 Internal calibrated RC oscillator overview
	2.3 Oscillator characteristics
	2.4 Implementation of the calibration
	2.5 Calibration protocol
	2.6 The calibration firmware

	3 Calibrating with JTAGICE mkII or AVRONE
	3.1 Make the calibration firmware
	3.2 Using the command line tools

	4 Performance of the Calibration firmware
	5 Calibration Clock Accuracy
	6 Quick Start Guide to Calibration of the internal RC using AVR Studio
	7 Runtime calibration using a 32.768 kHz reference clock

