Name:	Matric Number:	
Section / Group:	Date of experiment:	

EXPERIMENTAL DATA

 Table 1 Drag Force Measured by Direct Weighing

Drag Force (gmf)	∆ <i>H</i> ₀ (mm)	∆ <i>h</i> ₀ (mm)

 Table 2
 Pressure Distribution around a Cylinder

θ (Deg.)	Δh (mm)
0 ⁰	
20 ⁰	
40 ⁰	
60 ⁰	
80 ⁰	
1000	
1 20 ⁰	
140 ⁰	
160 ⁰	
180 ⁰	

Note:

- 1. The pressure should be relatively symmetrical about the line $\theta = 0^{\circ}$, so assume the values of pressure are similar for reverse direction ($\theta = -20^{\circ}$ until -180 °).
- 2. ΔH_o is constant: _____ mm, so pressure head caused by total pressure $P_o = N/m^2$
- 3. Δh_o is constant : _____ mm, so pressure head caused by static pressure $p_o = N/m^2$

EXPERIMENTAL RESULT

Drag Force (gmf)	∆ <i>H</i> ₀ (mm)	P。 (N/m²)	∆ <i>h</i> ₀ (mm)	p₀ (N/m²)	$P_{\circ} - p_{\circ} = \frac{1}{2}\rho U^{2}$ (N/m ²)

Table 3 Drag Force Measured by Direct Weighing

 Table 4
 Pressure Distribution around a Cylinder

θ (Deg.)	∆ <i>h</i> (mm)	р (N/m²)	ρ - ρ₀ (N/m²)	$c_{p} = \frac{p - p_{o}}{\frac{1}{2}\rho U^{2}}$ (N/m ²)	c _p Cos θ
00					
200					
400					
60 ⁰					
80 ⁰					
1000					
1200					
1400					
160 ⁰					
180 ⁰					

SAMPLE CALCULATION

Show a sample of calculation and attach it with the report.

DISCUSSION

1. For the direct weighing method, plot the drag force against the dynamic pressure. Establish the slope and calculate the drag coefficient, C_D.

1. For the pressure distribution method, plot the graphs of c_p and $c_p \cos \theta$ as functions of angle θ . Determine the drag coefficient, C_D .

3. Discuss the difference of the values obtained for the drag coefficient by those two methods.

CONCLUSION

State the conclusions of the experiment based on the understanding from results, graphs and discussions.

