Results and Discussion

Let V = Heater Voltage (volts), I = Heater Current (amperes), Heat Flow, Q (watts)

T1 = Heater section high temperature (°C) T2 = Heater section mid temperature (°C) T3 = Heater section low temperature (°C) T6 = Cooled section high temperature (°C) T7 = Cooled section mid temperature (°C) T8 = Cooled section low temperature (°C)

Length of specimen	= 0.030 (m)
Diameter of bar	= 0.025 (m)

The necessary data for calculations will be recorded to the table given below

	VOLTS	AMP	Q	T1	Т2	Т3	T4	T5	Т6	T7	Т8
IVIATERIALS	V	I	W	°C							
	Thermocouple position			1	2	3	_	_	6	7	8

For each set of readings plot a graph of temperature against thermocouple position. Observe that each temperature profile is a curve and that the gradient at any point on the curve decreases with increasing distance from the heater.

Calculations: Using the equation given below, calculate the thermal conductivity. Thermal conductivity is defined as:

$$k = \frac{Q\Delta L}{A\Delta T}$$

Conclusion:

- 1. Search the value of thermal conductivity, *k* for each specimen from appropriate references.
- 2. Calculate the percentage difference between the theory and experimental value of thermal conductivity, *k*.
- 3. Explain why there is a difference value between theory and experimental?