

TECHNICAL CHEMISTRY - BMMV 1013

Thermochemistry

IMRAN SYAKIR BIN MOHAMAD | MOHD HAIZAL BIN MOHD HUSIN FACULTY OF MECHANICAL ENGINEERING

Chapter 7

The Nature & Types of Energy

Energy is the capacity to do work

- Thermal energy is the energy associated with the random motion of atoms and molecules
- Chemical energy is the energy stored within the bonds of chemical substances
- *Nuclear energy* is the energy stored within the collection of neutrons and protons in the atom
- *Electrical energy* is the energy associated with the flow of electrons
- Potential energy is the energy available by virtue of an object's position

Energy Changes in Chemical Reactions

Heat is the transfer of **thermal energy** between two bodies that are at different temperatures.

Temperature is a measure of the **thermal energy**.

Temperature ≠ Thermal Energy

greater thermal energy

Thermochemistry is the study of heat change in chemical reactions.

The **system** is the specific part of the universe that is of interest in the study.

Exothermic process is any process that gives off heat – transfers thermal energy from the system to the surroundings.

$$2H_2(g) + O_2(g) \longrightarrow 2H_2O(h) + energy$$

$$H_2O(g) \longrightarrow H_2O(l) + energy$$

Endothermic process is any process in which heat has to be supplied to the system from the surroundings.

energy + 2HgO (s)
$$\longrightarrow$$
 2Hg (l) + O₂ (g)
energy + H₂O (s) \longrightarrow H₂O (l)

Enthalpy

Enthalpy (H) is used to quantify the heat flow into or out of a system in a process that occurs at constant pressure.

```
\Delta H = H (\text{products}) - H (\text{reactants})
```

 ΔH = heat given off or absorbed during a reaction **at constant pressure**

6.01 kJ are absorbed for every 1 mole of ice that melts at 0°C and 1 atm.

$$H_2O(s) \longrightarrow H_2O(l)$$
 $\Delta H = 6.01 \text{ kJ}$

890.4 kJ are released for every 1 mole of methane that is combusted at 25°C and 1 atm.

 $CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(l) \quad \Delta H = -890.4 \text{ kJ}$

• The stoichiometric coefficients always refer to the number of moles of a substance

$$H_2O(s) \longrightarrow H_2O(l) \qquad \Delta H = 6.01 \text{ kJ}$$

• If you reverse a reaction, the sign of ΔH changes

$$H_2O(h) \longrightarrow H_2O(s) \quad \Delta H = -6.01 \text{ kJ}$$

• If you multiply both sides of the equation by a factor n, then ΔH must change by the same factor n.

 $2H_2O(s) \longrightarrow 2H_2O(l) \quad \Delta H = 2 \times 6.01 = 12.0 \text{ kJ}$

• The physical states of all reactants and products must be specified in thermochemical equations.

$$H_2O(s) \longrightarrow H_2O(h) \qquad \Delta H = 6.01 \text{ kJ}$$
$$H_2O(h) \longrightarrow H_2O(g) \qquad \Delta H = 44.0 \text{ kJ}$$

How much heat is evolved when 266 g of white phosphorus (P_4) burn in air?

Calorimetry

The **specific heat** (**s**) of a substance is the amount of heat (*q*) required to raise the temperature of **one gram** of the substance by **one degree** Celsius.

The *heat capacity* (C) of a substance is the amount of heat (q) required to raise the temperature of a given quantity (m) of the substance by **one degree** Celsius.

C = ms

Heat ((q)	absorbed	or	released:

 $q = ms\Delta t$

 $q=C\!\Delta t$

 $\Delta t = t_{\text{final}} - t_{\text{initial}}$

Table 6.1TheSpecific Heats of SomeCommon Substances

Substance	Specific heat (J/g · °C)
AI	0.900
Au	0.129
C (graphite)	0.720
C (diamond)	0.502
Cu	0.385
Fe	0.444
Hg	0.139
H ₂ O	4.184
C ₂ H ₅ OH (ethanol)	2.46

How much heat is given off when an 869 g iron bar cools from 94°C to 5°C?

Types of Calorimeter

Constant Pressure (coffee cup)

Constant Volume (bomb)

Constant-Volume Calorimetry

 $q_{sys} = q_{water} + q_{bomb} + q_{rxn}$ $q_{sys} = 0$ $q_{rxn} = - (q_{water} + q_{bomb})$ $q_{water} = ms\Delta t$ $q_{bomb} = C_{bomb}\Delta t$ Reaction at Constant V

 $\Delta H \neq q_{\rm rxn}$ $\Delta H \sim q_{\rm rxn}$

No heat enters or leaves!

Constant-Pressure Calorimetry

 $\begin{aligned} q_{\text{sys}} &= q_{\text{water}} + q_{\text{cal}} + q_{\text{rxn}} \\ q_{\text{sys}} &= 0 \\ q_{\text{rxn}} &= - (q_{\text{water}} + q_{\text{cal}}) \\ q_{\text{water}} &= m \text{s} \Delta t \\ q_{\text{cal}} &= C_{cal} \Delta t \end{aligned}$

Reaction at Constant P $\Delta H = q_{rxn}$

No heat enters or leaves!

Standard Enthalpy of Formation & Reaction

Because there is no way to measure the absolute value of the enthalpy of a substance, must I measure the enthalpy change for every reaction of interest?

Establish an arbitrary scale with the standard enthalpy of formation (ΔH^0_f) as a reference point for all enthalpy expressions.

Standard enthalpy of formation (ΔH_f^0) is the heat change that results when **one mole** of a compound is formed from its **elements** at a pressure of 1 atm.

The standard enthalpy of formation of any element in its most stable form is zero.

 $\Delta H^0_f(O_2) = 0 \qquad \Delta H^0_f(C, \text{ graphite}) = 0$ $\Delta H^0_f(O_3) = 142 \text{ kJ/mol} \qquad \Delta H^0_f(C, \text{ diamond}) = 1.90 \text{ kJ/mol}$

Substance	Δ <i>H</i> [°] _f (kJ/mol)	Substance	∆ <i>H</i> ° (kJ/mol)
Ag(s)	0	H ₂ O ₂ (/)	-187.6
AgCI(s)	-127.04	Hg(/)	0
AI(s)	0	l ₂ (s)	0
$AI_2O_3(s)$	- 1669.8	HI(g)	25.94
Br ₂ (/)	0	Mg(s)	0
HBr(g)	-36.2	MgO(s)	-601.8
C(graphite)	0	$MgCO_3(s)$	-1112.9
C(diamond)	1.90	$N_2(g)$	0
CO(g)	-110.5	$NH_3(g)$	-46.3
$CO_2(g)$	-393.5	NO(g)	90.4
Ca(s)	0	$NO_2(g)$	33.85
CaO(s)	-635.6	$N_2O_4(g)$	9.66
CaCO ₃ (s)	-1206.9	$N_2O(g)$	81.56
$Cl_2(g)$	0	O(g)	249.4
HCI(g)	-92.3	$O_2(g)$	0
Cu(s)	0	O ₃ (g)	142.2
CuO(s)	-155.2	S(rhombic)	0
F ₂ (g)	0	S(monoclinic)	0.30
HF(g)	-268.61	$SO_2(g)$	-296.1
H(g)	218.2	$SO_3(g)$	-395.2
$H_2(g)$	0	$H_2S(g)$	-20.15
$H_2O(g)$	-241.8	ZnO(s)	-347.98
H ₂ O(/)	-285.8		

Table 6.3 Standard Enthalpies of Formation of Some Inorganic Substances at 25°C

The standard enthalpy of reaction (ΔH^0_{rxn}) is the enthalpy of a reaction carried out at 1 atm.

$$aA + bB \longrightarrow cC + dD$$

 $\Delta H^{0}_{rxn} = \left[c \Delta H^{0}_{f}(C) + d \Delta H^{0}_{f}(D) \right] - \left[a \Delta H^{0}_{f}(A) + b \Delta H^{0}_{f}(B) \right]$

 $\Delta H_{rxn}^0 = \Sigma n \Delta H_f^0$ (products) - $\Sigma m \Delta H_f^0$ (reactants)

Benzene (C₆H₆) burns in air to produce carbon dioxide and liquid water. How much heat is released per mole of benzene combusted? The standard enthalpy of formation of benzene is 49.04 kJ/mol. *Hess's Law:* When reactants are converted to products, the change in enthalpy is the same whether the reaction takes place in one step or in a series of steps.

(Enthalpy is a state function. It doesn't matter how you get there, only where you start and end.)

Q&A session

Calculate the quantity of heat required to raise the temperature of 2.10 gram of water from 2.0 °C to 6.0 °C.

> Calculate the specific heat if a 36.9 gram sample of a metal at 57.2 °C is immersed in 50.1 gram of water at 16.0 °C, warming the water to 20.5 °C.

Calculate the enthalpy of the following reaction based
on the enthalpies of combustion in equation given: $C_2H_2(g) + 2H_2(g) \rightarrow C_2H_6(g)$ $\Delta H = ?$ $C_2H_2(g) + 2.5O_2(g) \rightarrow 2CO_2(g) + H_2O(l)$ $\Delta H = -1305 \text{ kJ}$ $H_2(g) + 0.5O_2(g) \rightarrow H_2O(l)$ $\Delta H = -286 \text{ kJ}$ $C_2H_6(g) + 3.5O_2(g) \rightarrow 2CO_2(g) + 3H_2O(l)$ $\Delta H = -1560 \text{ kJ}$