TECHNICAL CHEMISTRY - BMMV 1013

Thermochemistry

$$
\text { Chepter } 7
$$

IMRAN SYAKIR BIN MOHAMAD | MOHD HAIZAL BIN MOHD HUSIN
FACULTY OF MECHANICAL ENGINEERING

The Nature \& Types of Energy

Energy is the capacity to do work

- Thermal energy is the energy associated with the random motion of atoms and molecules
- Chemical energy is the energy stored within the bonds of chemical substances
- Nuclear energy is the energy stored within the collection of neutrons and protons in the atom
- Electrical energy is the energy associated with the flow of electrons
- Potential energy is the energy available by virtue of an object's position

Energy Changes in Chemical Reactions

Heat is the transfer of thermal energy between two bodies that are at different temperatures.

Temperature is a measure of the thermal energy.
Temperature \neq Thermal Energy

$90^{\circ} \mathrm{C}$

greater thermal energy

Thermochemistry is the study of heat change in chemical reactions.

The system is the specific part of the universe that is of interest in the study.

The surroundings are the rest of the universe outside the system.

[^0]energy
nothing

Exothermic process is any process that gives off heat transfers thermal energy from the system to the surroundings.

$$
\begin{gathered}
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\text { energy } \\
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{n})+\text { energy }
\end{gathered}
$$

Endothermic process is any process in which heat has to be supplied to the system from the surroundings.
energy $+2 \mathrm{HgO}(s) \longrightarrow 2 \mathrm{Hg}(\Lambda)+\mathrm{O}_{2}(g)$

$$
\text { energy }+\mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{n}
$$

Enthalpy

Enthalpy (\mathbf{H}) is used to quantify the heat flow into or out of a system in a process that occurs at constant pressure.

$$
\Delta H=H \text { (products) }-H \text { (reactants) }
$$

$\Delta H=$ heat given off or absorbed during a reaction at constant pressure

$$
\Delta H<0
$$

$\Delta H>0$

Thermochemical Equations

Is ΔH negative or positive?

System absorbs heat
Endothermic
$\Delta H>0$
6.01 kJ are absorbed for every 1 mole of ice that melts at $0^{\circ} \mathrm{C}$ and 1 atm .

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{n}) \Delta \mathrm{H}=6.01 \mathrm{~kJ}
$$

Thermochemical Equations

Is ΔH negative or positive?

System gives off heat
Exothermic
$\Delta H<0$
890.4 kJ are released for every 1 mole of methane that is combusted at $25^{\circ} \mathrm{C}$ and 1 atm .

$$
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{n}) \Delta \mathrm{H}=-890.4 \mathrm{~kJ}
$$

Thermochemical Equations

- The stoichiometric coefficients always refer to the number of moles of a substance

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{n}) \quad \Delta H=6.01 \mathrm{~kJ}
$$

- If you reverse a reaction, the sign of ΔH changes

$$
\mathrm{H}_{2} \mathrm{O}\left(\text { II } \longrightarrow \mathrm{H}_{2} \mathrm{O}(\text { (s) }) \quad \Delta H=-6.01 \mathrm{~kJ}\right.
$$

- If you multiply both sides of the equation by a factor n, then ΔH must change by the same factor n.

$$
2 \mathrm{H}_{2} \mathrm{O}(s) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}() \quad \Delta H=2 \times 6.01=12.0 \mathrm{~kJ}
$$

Thermochemical Equations

- The physical states of all reactants and products must be specified in thermochemical equations.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O} \text { (ss) } \longrightarrow \mathrm{H}_{2} \mathrm{O} \text { (II) } \quad \Delta H=6.01 \mathrm{~kJ} \\
& \mathrm{H}_{2} \mathrm{O} \text { (II) } \longrightarrow \mathrm{H}_{2} \mathrm{O} \text { (g9) } \quad \Delta H=44.0 \mathrm{~kJ}
\end{aligned}
$$

How much heat is evolved when 266 g of white phosphorus $\left(\mathrm{P}_{4}\right)$ burn in air?

Calorimetry

The specific heat (s) of a substance is the amount of heat (q) required to raise the temperature of one gram of the substance by one degree Celsius.

The heat capacity (\boldsymbol{C}) of a substance is the amount of heat (q) required to raise the temperature of a given quantity (m) of the substance by one degree Celsius.

$$
C=m s
$$

Heat (q) absorbed or released:

$$
\begin{aligned}
q & =m s \Delta t \\
q & =C \Delta t \\
\Delta t & =t_{\text {final }}-t_{\text {initial }}
\end{aligned}
$$

Table 6.1 The Specific Heats of Some Common Substances	
Substance	Specific heat $\left(\mathrm{J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)$
Al	0.900
Au	0.129
C (graphite)	0.720
C (diamond)	0.502
Cu	0.385
Fe	0.444
Hg	0.139
$\mathrm{H}_{2} \mathrm{O}$	4.184
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (ethanol)	2.46

$\$$
How much heat is given off when an 869 g iron bar cools from $94^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$?

Types of Calorimeter

Constant Pressure (coffee cup)

Constant-Volume Calorimetry

No heat enters or leaves!

Constant-Pressure Calorimetry

$$
\begin{aligned}
& q_{\mathrm{sys}}=q_{\mathrm{water}}+q_{\mathrm{cal}}+q_{\mathrm{rxn}} \\
& q_{\mathrm{sys}}=0 \\
& q_{\mathrm{rxn}}=-\left(q_{\mathrm{water}}+q_{\mathrm{cal}}\right) \\
& q_{\mathrm{water}}=m \mathrm{~s} \Delta t \\
& q_{\mathrm{cal}}=C_{c a l} \Delta t
\end{aligned}
$$

Reaction at Constant P

$$
\Delta H=q_{\mathrm{rxn}}
$$

No heat enters or leaves!

Standard Enthalpy of Formation \& Reaction

Because there is no way to measure the absolute value of the enthalpy of a substance, must I measure the enthalpy change for every reaction of interest?

Establish an arbitrary scale with the standard enthalpy of formation ($\Delta \mathrm{H}_{t}^{0}$) as a reference point for all enthalpy expressions.

Standard enthalpy of formation $\left(\Delta \mathrm{H}_{\mathrm{f}}^{0}\right)$ is the heat change that results when one mole of a compound is formed from its elements at a pressure of 1 atm .

The standard enthalpy of formation of any element in its most stable form is zero.

$$
\begin{array}{cc}
\Delta \mathrm{H}_{\mathrm{f}}^{0}\left(\mathrm{O}_{2}\right)=0 & \Delta \mathrm{H}_{\mathrm{f}}^{0}(\mathrm{C}, \text { graphite })=0 \\
\Delta \mathrm{H}_{\mathrm{f}}^{0}\left(\mathrm{O}_{3}\right)=142 \mathrm{~kJ} / \mathrm{mol} & \Delta \mathrm{H}_{\mathrm{f}}^{0}(\mathrm{C}, \text { diamond })=1.90 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

Table 6.3 Standard Enthalpies of Formation of Some Inorganic Substances at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Substance	$\Delta H_{\ddagger}^{\circ}(\mathrm{kJ} / \mathrm{mol})$	Substance	$\Delta H_{\text {f }}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{Ag}(\mathrm{s})$	0	$\mathrm{H}_{2} \mathrm{O}_{2}(1)$	-187.6
$\mathrm{AgCl}(\mathrm{s})$	-127.04	$\mathrm{Hg}(1)$	0
$\mathrm{Al}(\mathrm{s})$	0	$\mathrm{I}_{2}(\mathrm{~s})$	0
$\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$	-1669.8	$\mathrm{HI}(\mathrm{g})$	25.94
$\mathrm{Br}_{2}(1)$	0	$\mathrm{Mg}(\mathrm{s})$	0
$\mathrm{HBr}(\mathrm{g})$	-36.2	$\mathrm{MgO}(\mathrm{s})$	-601.8
C(graphite)	0	$\mathrm{MgCO}_{3}(\mathrm{~s})$	-1112.9
C(diamond)	1.90	$\mathrm{N}_{2}(\mathrm{~g})$	0
CO(g)	-110.5	$\mathrm{NH}_{3}(\mathrm{~g})$	-46.3
$\mathrm{CO}_{2}(\mathrm{~g})$	-393.5	NO(g)	90.4
$\mathrm{Ca}(\mathrm{s})$	0	$\mathrm{NO}_{2}(\mathrm{~g})$	33.85
$\mathrm{CaO}(\mathrm{s})$	-635.6	$\mathrm{N}_{2} \mathrm{O}_{4}(g)$	9.66
$\mathrm{CaCO}_{3}(\mathrm{~s})$	-1206.9	$\mathrm{N}_{2} \mathrm{O}(\mathrm{g})$	81.56
$\mathrm{Cl}_{2}(\mathrm{~g})$	0	$\mathrm{O}(\mathrm{g})$	249.4
$\mathrm{HCl}(\mathrm{g})$	-92.3	$\mathrm{O}_{2}(\mathrm{~g})$	0
$\mathrm{Cu}(\mathrm{s})$	0	$\mathrm{O}_{3}(\mathrm{~g})$	142.2
$\mathrm{CuO}(\mathrm{s})$	-155.2	S (rhombic)	0
$\mathrm{F}_{2}(\mathrm{~g})$	0	S (monoclinic)	0.30
HF(g)	-268.61	$\mathrm{SO}_{2}(\mathrm{~g})$	-296.1
$\mathrm{H}(\mathrm{g})$	218.2	$\mathrm{SO}_{3}(\mathrm{~g})$	-395.2
$\mathrm{H}_{2}(\mathrm{~g})$	0	$\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$	-20.15
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-241.8	$\mathrm{ZnO}(\mathrm{s})$	-347.98
$\mathrm{H}_{2} \mathrm{O}(1)$	-285.8		

The standard enthalpy of reaction $\left(\Delta \mathrm{H}_{\mathrm{rxn}}^{0}\right)$ is the enthalpy of a reaction carried out at 1 atm .

$$
\begin{gathered}
a \mathrm{~A}+b \mathrm{~B} \longrightarrow c \mathrm{C}+d \mathrm{D} \\
\Delta \mathrm{H}_{\mathrm{rxn}}^{0}=\left[c \Delta \mathrm{H}_{\mathrm{f}}^{0}(\mathrm{C})+d \Delta \mathrm{H}_{\mathrm{f}}^{0}(\mathrm{D})\right]-\left[a \Delta \mathrm{H}_{\mathrm{f}}^{0}(\mathrm{~A})+b \Delta \mathrm{H}_{\mathrm{f}}^{0}(\mathrm{~B})\right] \\
\Delta \mathrm{H}_{\mathrm{rxn}}^{0}=\Sigma n \Delta \mathrm{H}_{\mathrm{f}}^{0}(\text { products })-\Sigma m \Delta \mathrm{H}_{\mathrm{f}}^{0}(\text { reactants })
\end{gathered}
$$

Benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ burns in air to produce carbon dioxide and liquid water. How much heat is released per mole of benzene combusted? The standard enthalpy of formation of benzene is $49.04 \mathrm{~kJ} / \mathrm{mol}$.

Hess's Law: When reactants are converted to products, the change in enthalpy is the same whether the reaction takes place in one step or in a series of steps.
(Enthalpy is a state function. It doesn't matter how you get there, only where you start and end.)

> Calculate the standard enthalpy of formation of $\mathrm{CS}_{2}(\Lambda)$ given that:
> $\mathrm{C}($ graphite $)+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{0}=-393.5 \mathrm{~kJ}$ $\mathrm{~S}($ rhombic $)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{SO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{0}=-296.1 \mathrm{~kJ}$ $\mathrm{CS}_{2}(\mathrm{I})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{0}=-1072 \mathrm{~kJ}$

Q\&A session

$Q_{\text {wastion }} 1$

Qussion 2

Question

Calculate the quantity of heat required to raise the temperature of 2.10 gram of water from $2.0^{\circ} \mathrm{C}$ to $6.0^{\circ} \mathrm{C}$.

Calculate the specific heat if a 36.9 gram sample of a metal at $57.2{ }^{\circ} \mathrm{C}$ is immersed in 50.1 gram of water at $16.0^{\circ} \mathrm{C}$, warming the water to $20.5^{\circ} \mathrm{C}$.

Calculate the enthalpy change for the reaction of one mole of CH_{4} with oxygen gas to yield carbon dioxide and water. $\Delta H_{f}^{o} \mathrm{CH} 4(\mathrm{~g})=-74.5 \mathrm{~kJ}$

Calculate the enthalpy of the following reaction based on the enthalpies of combustion in equation given:

$$
\begin{array}{ll}
\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{2}}(\mathbf{g})+\mathbf{2} \mathbf{H}_{\mathbf{2}}(\mathbf{g}) \rightarrow \mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{6}}(\mathbf{g}) & \Delta \mathbf{H}=? \\
\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+2.5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}=-1305 \mathrm{~kJ} \\
\mathrm{H}_{2}(\mathrm{~g})+0.5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}=-286 \mathrm{~kJ} \\
\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+3.5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}=-156 \mathrm{~kJ}
\end{array}
$$

[^0]: Exchange: mass \& energy

