

TECHNICAL CHEMISTRY - BMMV 1013

Atom, Molecules & Ions

Chapter

 $\mathbf{2}$

IMRAN SYAKIR BIN MOHAMAD | MOHD HAIZAL BIN MOHD HUSIN FACULTY OF MECHANICAL ENGINEERING

- Atom is the basic unit of an element, made up of even smaller particles called subatomic particles.
- There are three fundamental components (subatomic particles) that are important in chemistry: Electron, Proton and Neutron.
- The protons and neutrons of an atom are packed in an extremely small nucleus.
- Electrons are shown as 'clouds' around the nucleus.

Figure above shows the location of the protons, Neutrons and electrons in an atom

Subatomic Particles

Particle	Mass (g)	Charge (Coulombs)	Charge (units)
Electron (e ⁻)	9.1 x 10 ⁻²⁸	-1.6 x 10 ⁻¹⁹	-1
Proton (p ⁺)	1.67 x 10 ⁻²⁴	+1.6 x 10 ⁻¹⁹	+1
Neutron (n)	1.67 x 10 ⁻²⁴	0	0

mass $p = mass n = 1840 x mass e^{-1}$

Atomic number (Z) = number of protons in nucleus

Mass number (A) = number of protons + number of neutrons

= atomic number (Z) + number of neutrons

Isotopes are atoms of the same element (X) with different numbers of neutrons in their nuclei

Mass Number
$$\longrightarrow A X \longleftarrow$$
 Element Symbol Atomic Number $\longrightarrow Z X$

How many protons, neutrons, and electrons are in ${}^{14}_{6}$ C?

How many protons, neutrons, and electrons are in ${}^{11}_{6}$ C?

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Modern Periodic Table

1 1A																	18 8A
ł	All											13 3A	14 4A	15 5A	16 6A	17 7A	2 He
ii.	<i>(ali</i>											5 B	6 C	7 N	8 0	ů	1) Ne
Alka	Ear	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 	10	11 1B	12 2B	13 Al	14 51	15 P	16 S		Not
ui M	th N	21 Sc	22 Ti	Per	iod	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	Gr	33 As	34 Se	Halo	ole (
etal	leta	39 ¥	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	qno	51 Sb	52 Te	ger	Gas
55 C8	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	85 Rn
87 Fr	88 K.a	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110	ш	112	(113)	14	(115)	116	(117)	1.8
						and the second second					Interest		In second			Internet	
	Metals	•		58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
	Metall	oids		90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Nonmetals

Chemistry In Action

Molecules & Ions

A *molecule* is an aggregate of two or more atoms in a definite arrangement held together by chemical bonds

A *diatomic molecule* contains only two atoms H_2 , N_2 , O_2 , Br_2 , HCI, CO

A *polyatomic molecule* contains more than two atoms O_3 , H_2O , NH_3 , CH_4

An *ion* is an atom, or group of atoms, that has a net positive or negative charge.

cation – ion with a positive charge If a neutral atom **loses** one or more electrons it becomes a cation.

anion – ion with a negative charge
If a neutral atom gains one or more electrons
it becomes an anion.

17 protons17 electrons

Cl

A *monatomic ion* contains only one atom

Na⁺, Cl⁻, Ca²⁺, O²⁻, Al³⁺, N³⁻

OH⁻, CN⁻, NH₄⁺, NO₃⁻

How many protons and electrons are in ${}^{27}_{13}Al^{3^+}$?

How many protons and electrons are in $\frac{78}{34}$ Se²⁻?

A *molecular formula* shows the exact number of atoms of each element in the smallest unit of a substance

An *empirical formula* shows the simplest whole-number ratio of the atoms in a substance

ionic compounds consist of a combination of cations and an anions

- the formula is always the same as the empirical formula
- the sum of the charges on the cation(s) and anion(s) in each formula unit must equal zero

The ionic compound NaCl

Formula of Ionic Compounds

Names and Formulas of Some Common Inorganic Cations and Anions

Cation	Anion
Aluminum (Al ³⁺)	Bromide (Br ⁻)
Ammonium (NH ₄ ⁺)	Carbonate (CO_3^{2-})
Barium (Ba ²⁺)	Chlorate (ClO_3^-)
Cadmium (Cd ²⁺)	Chloride (Cl ⁻)
Calcium (Ca ²⁺)	Chromate (CrO_4^{2-})
Cesium (Cs ⁺)	Cyanide (CN ⁻)
Chromium(III) or chromic (Cr ³⁺)	Dichromate ($Cr_2O_7^{2-}$)
Cobalt(II) or cobaltous (Co ²⁺)	Dihydrogen phosphate $(H_2PO_4^-)$
Copper(I) or cuprous (Cu ⁺)	Fluoride (F ⁻)
Copper(II) or cupric (Cu ²⁺)	Hydride (H ⁻)
Hydrogen (H ⁺)	Hydrogen carbonate or bicarbonate (HCO_3^-)
Iron(II) or ferrous (Fe ²⁺)	Hydrogen phosphate (HPO_4^2)
Iron(III) or ferric (Fe ³⁺)	Hydrogen sulfate or bisulfate (HSO $_4^-$)
Lead(II) or plumbous (Pb ²⁺)	Hydroxide (OH ⁻)
Lithium (Li ⁺)	Iodide (I ⁻)
Magnesium (Mg ²⁺)	Nitrate (NO_3^-)
Manganese(II) or manganous (Mn ²⁺)	Nitride (N^{3-})
Mercury(I) or mercurous (Hg ₂ ²⁺)*	Nitrite (NO_2^-)
Mercury(II) or mercuric (Hg ²⁺)	Oxide (O^{2-})
Potassium (K ⁺)	Permanganate (MnO ₄ ⁻)
Silver (Ag ⁺)	Peroxide $(O_2^{2^-})$

Naming Compound

Ionic Compounds

- often a metal + nonmetal
- anion (nonmetal), add "ide" to element name

 $BaCl_2$ K_2O $Mg(OH)_2$ KNO_3 Transition metal ionic compounds
indicate charge on metal with Roman numerals

- $FeCl_2$ 2 Cl⁻ -2 so Fe is +2
- $FeCl_3$ 3 Cl⁻ -3 so Fe is +3
- Cr_2S_3 3 S⁻² -6 so Cr is +3 (6/2)

Molecular compounds

- nonmetals or nonmetals + metalloids
- common names
 - H₂O, NH₃, CH₄, C₆₀
- element further left in periodic table is 1st

• NF₃ , NO₂

element closest to bottom of group is 1st

• **SO**₂

- if more than one compound can be formed from the same elements, use prefixes to indicate number of each kind of atom
- last element ends in ide

Greek Prefixes Used in Naming Molecular Compounds

Meaning
1
2
3
4
5
6
7
8
9
10

Molecular Compounds

Acid & Bases

An *acid* can be defined as a substance that yields hydrogen ions (H⁺) when dissolved in water.

HCI

- •Pure substance, hydrogen chloride
- •Dissolved in water (H⁺ Cl⁻), hydrochloric acid

An **oxoacid** is an acid that contains hydrogen, oxygen, and another element.

 HNO_3 H_2CO_3 H_2SO_4 nitric acid carbonic acid sulfuric acid

Some Simple Acids

Anion	Corresponding Acid			
F ⁻ (fluoride)	HF (hydrofluoric acid)			
Cl ⁻ (chloride)	HCl (hydrochloric acid)			
Br ⁻ (bromide)	HBr (hydrobromic acid)			
I ⁻ (iodide)	HI (hydroiodic acid)			
CN ⁻ (cyanide)	HCN (hydrocyanic acid)			
S^{2-} (sulfide)	H ₂ S (hydrosulfuric acid)			

Names of Oxoacids and Oxoanions That Contain Chlorine

Acid	Anion
HClO ₄ (perchloric acid)	ClO_4^- (perchlorate)
HClO ₃ (chloric acid)	ClO_3^- (chlorate)
HClO ₂ (chlorous acid)	ClO_2^- (chlorite)
HClO (hypochlorous acid)	ClO ⁻ (hypochlorite)

A **base** can be defined as a substance that yields hydroxide ions (OH⁻) when dissolved in water.

Common and Systematic Names of Some Compounds

Formula	Common Name	Systematic Name
H ₂ O	Water	Dihydrogen monoxide
NH ₃	Ammonia	Trihydrogen nitride
CO_2	Dry ice	Solid carbon dioxide
NaCl	Table salt	Sodium chloride
N ₂ O	Laughing gas	Dinitrogen monoxide
CaCO ₃	Marble, chalk, limestone	Calcium carbonate
CaO	Quicklime	Calcium oxide
Ca(OH) ₂	Slaked lime	Calcium hydroxide
NaHCO ₃	Baking soda	Sodium hydrogen carbonate
$Na_2CO_3 \cdot 10H_2O$	Washing soda	Sodium carbonate decahydrate
$MgSO_4 \cdot 7H_2O$	Epsom salt	Magnesium sulfate heptahydrate
Mg(OH) ₂	Milk of magnesia	Magnesium hydroxide
$CaSO_4 \cdot 2H_2O$	Gypsum	Calcium sulfate dihydrate