\qquad

THE UNITED REPUBLIC OF TANZANIA THE PRESIDENT'S OFFICE REGIONAL ADMINISTRATION AND LOCAL GOVERNMENT
 TANGANYIKA DISTRICT COUNCIL FORM FOUR MOCK EXAMINATIONS

PHYSICS 2A
ACTUAL PRACTICAL 2A
031/2A
Time: 2:30 Hours
April, 2023

INSTRUCTIONS

1. This paper consists of two questions. Answer all questions.
2. Each question carries 25 marks.
3. Non-programmable calculators and mathematical tables may be used.
4. Cellular phones and other unauthorized materials are not allowed in the examination room.
5. Write your index number on every page of your answer booklet(s) provided
6. The following information may be useful:
(i) Pie (II) $=3.14$
(ii) Acceleration due gravity $(\mathrm{g})=10 \mathrm{~m} / \mathrm{s}^{2}$

FOR EXAMINERS' USE ONLY

QUESTION NUMBER	SCORE	EXAMINER'S INITIALS
01		
02		
TOTAL		
CHECKER'S INITIALS		

1. Assemble the apparatus as shown in figure 1 with the zero mark of the scale of the ruler at the bottom of the retort stand.

Figure 1
Record the reading at the pointer on the scale of the meter rule when the scale pan is empty.
Record it as d_{o} put the mass of 20 g to the scale pan and record the pointer reading pointer d.
Find the extension $\mathrm{e}=\mathrm{d}_{\mathrm{o}}-\mathrm{d}$.
Repeat the above procedure for the masses of $40 \mathrm{~g}, 60 \mathrm{~g}, 80 \mathrm{~g}$, and 100 g .
(a) Tabulate your values by making a column of mass on the scale pan, pointer reading d and extension $\mathrm{e}=\mathrm{d}_{\mathrm{o}}-\mathrm{d}$.
(b) Plot a graph of mass against extension.
\qquad
(c) Find the slope S of the graph.
(d) Read the extension when the value of the mass is equal to 55 g .
(e) Use the graph to determine the mass when the extension is 3 cm .
(f) Suggest a suitable title of the experiment.
(g) What is your conclusion?
(h) List two sources of errors and three ways of minimizing these errors.
2. You are required to determine the values of unknown resistance X using metre bridge.

Proceed as follows:
(a) Connect the circuit as shown in figure 2, where R is a resistance box, E is a dry cell, K is a key, G is a centre-zero galvanometer, J is a jockey and X is unknown resistance.

(b) $\operatorname{Set} \mathrm{R}=1 \Omega$, close the key K , slide the jockey over the metre bridge wire until the galvanometer reads zero. Read and record length L_{1}. Also read and record the corresponding length L_{2}.
(c) Repeat the procedure in 2 (b) for $\mathrm{R}=2 \Omega, 3 \Omega, 4 \Omega$ and 5Ω and record the value for L_{1} in each case.

Questions
(i) Tabulate your results including the values of $\frac{L 1}{L 2}$
(ii) Plot a graph of R against $\frac{L 1}{L 2}$
(iii)Deduce the slope S of the graph.
(iv)Find the value of unknown resistance X. Show clearly how you arrived to your answer.

